Ryan Carlsen, Hannah Weckel-Dahman, Jessica M J Swanson
{"title":"奈氏平衡、整流和饱和:离子通道行为透视。","authors":"Ryan Carlsen, Hannah Weckel-Dahman, Jessica M J Swanson","doi":"10.1016/j.bpj.2024.10.016","DOIUrl":null,"url":null,"abstract":"<p><p>The dissipation of electrochemical gradients through ion channels plays a central role in biology. Herein we use voltage-responsive kinetic models of ion channels to explore how electrical and chemical potentials differentially influence ion transport properties. These models demonstrate how electrically driven flux is greater than the Nernstian equivalent chemically driven flux yet still perfectly cancels when the two gradients oppose each other. We find that the location and relative stability of ion-binding sites dictates rectification properties by shifting the location of the most voltage-sensitive transitions. However, these rectification properties invert when bulk concentrations increase relative to the binding-site stabilities, moving the rate-limiting steps from uptake into a relatively empty channel to release from an ion-blocked full channel. Additionally, the origin of channel saturation is shown to depend on the free energy of uptake relative to bulk concentrations. Collectively these insights provide a framework for interpreting and predicting how channel properties manifest in electrochemical transport behavior.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nernst equilibrium, rectification, and saturation: Insights into ion channel behavior.\",\"authors\":\"Ryan Carlsen, Hannah Weckel-Dahman, Jessica M J Swanson\",\"doi\":\"10.1016/j.bpj.2024.10.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The dissipation of electrochemical gradients through ion channels plays a central role in biology. Herein we use voltage-responsive kinetic models of ion channels to explore how electrical and chemical potentials differentially influence ion transport properties. These models demonstrate how electrically driven flux is greater than the Nernstian equivalent chemically driven flux yet still perfectly cancels when the two gradients oppose each other. We find that the location and relative stability of ion-binding sites dictates rectification properties by shifting the location of the most voltage-sensitive transitions. However, these rectification properties invert when bulk concentrations increase relative to the binding-site stabilities, moving the rate-limiting steps from uptake into a relatively empty channel to release from an ion-blocked full channel. Additionally, the origin of channel saturation is shown to depend on the free energy of uptake relative to bulk concentrations. Collectively these insights provide a framework for interpreting and predicting how channel properties manifest in electrochemical transport behavior.</p>\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2024.10.016\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.10.016","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Nernst equilibrium, rectification, and saturation: Insights into ion channel behavior.
The dissipation of electrochemical gradients through ion channels plays a central role in biology. Herein we use voltage-responsive kinetic models of ion channels to explore how electrical and chemical potentials differentially influence ion transport properties. These models demonstrate how electrically driven flux is greater than the Nernstian equivalent chemically driven flux yet still perfectly cancels when the two gradients oppose each other. We find that the location and relative stability of ion-binding sites dictates rectification properties by shifting the location of the most voltage-sensitive transitions. However, these rectification properties invert when bulk concentrations increase relative to the binding-site stabilities, moving the rate-limiting steps from uptake into a relatively empty channel to release from an ion-blocked full channel. Additionally, the origin of channel saturation is shown to depend on the free energy of uptake relative to bulk concentrations. Collectively these insights provide a framework for interpreting and predicting how channel properties manifest in electrochemical transport behavior.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.