AKR1C1-CYP1B1-cAMP信号轴控制着肝外胆管癌的致瘤性和易感性。

IF 13.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Death and Differentiation Pub Date : 2024-10-30 DOI:10.1038/s41418-024-01407-1
Chang Liu, Cheng Zhang, Hongkun Wu, Zhibin Zhao, Zhenhua Wang, Xiaomin Zhang, Jieli Yang, Wenlong Yu, Zhexiong Lian, Minghui Gao, Lin Zhou
{"title":"AKR1C1-CYP1B1-cAMP信号轴控制着肝外胆管癌的致瘤性和易感性。","authors":"Chang Liu, Cheng Zhang, Hongkun Wu, Zhibin Zhao, Zhenhua Wang, Xiaomin Zhang, Jieli Yang, Wenlong Yu, Zhexiong Lian, Minghui Gao, Lin Zhou","doi":"10.1038/s41418-024-01407-1","DOIUrl":null,"url":null,"abstract":"<p><p>Extrahepatic cholangiocarcinoma (ECC), a highly malignant type of cancer with increasing incidence, has a poor prognosis due to limited treatment options. Based on genomic analysis of ECC patient samples, here we report that aldo-keto reductase family 1 member C1 (AKR1C1) is highly expressed in human ECC tissues and closely associated with ECC progression and poor prognosis. Intriguingly, we show that inducible AKR1C1 knockdown triggers ECC cells to undergo ferroptosis. Mechanistically, AKR1C1 degrades the protein stability of the cytochrome P450 family member CYP1B1, a newly discovered mediator of ferroptosis, via ubiquitin-proteasomal degradation. Additionally, AKR1C1 decreases CYP1B1 mRNA level through the transcriptional factor aryl-hydrocarbon receptor (AHR). Furthermore, the AKR1C1-CYP1B1 axis modulates ferroptosis in ECC cells via the cAMP-PKA signaling pathway. Finally, in a xenograft mouse model of ECC, AKR1C1 depletion sensitizes cancer cells to ferroptosis and synergizes with ferroptosis inducers to suppress tumor growth. Therefore, the AKR1C1-CYP1B1-cAMP signaling axis is a promising therapeutic target for ECC treatment, especially in combination with ferroptosis inducers.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":" ","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The AKR1C1-CYP1B1-cAMP signaling axis controls tumorigenicity and ferroptosis susceptibility of extrahepatic cholangiocarcinoma.\",\"authors\":\"Chang Liu, Cheng Zhang, Hongkun Wu, Zhibin Zhao, Zhenhua Wang, Xiaomin Zhang, Jieli Yang, Wenlong Yu, Zhexiong Lian, Minghui Gao, Lin Zhou\",\"doi\":\"10.1038/s41418-024-01407-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extrahepatic cholangiocarcinoma (ECC), a highly malignant type of cancer with increasing incidence, has a poor prognosis due to limited treatment options. Based on genomic analysis of ECC patient samples, here we report that aldo-keto reductase family 1 member C1 (AKR1C1) is highly expressed in human ECC tissues and closely associated with ECC progression and poor prognosis. Intriguingly, we show that inducible AKR1C1 knockdown triggers ECC cells to undergo ferroptosis. Mechanistically, AKR1C1 degrades the protein stability of the cytochrome P450 family member CYP1B1, a newly discovered mediator of ferroptosis, via ubiquitin-proteasomal degradation. Additionally, AKR1C1 decreases CYP1B1 mRNA level through the transcriptional factor aryl-hydrocarbon receptor (AHR). Furthermore, the AKR1C1-CYP1B1 axis modulates ferroptosis in ECC cells via the cAMP-PKA signaling pathway. Finally, in a xenograft mouse model of ECC, AKR1C1 depletion sensitizes cancer cells to ferroptosis and synergizes with ferroptosis inducers to suppress tumor growth. Therefore, the AKR1C1-CYP1B1-cAMP signaling axis is a promising therapeutic target for ECC treatment, especially in combination with ferroptosis inducers.</p>\",\"PeriodicalId\":9731,\"journal\":{\"name\":\"Cell Death and Differentiation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death and Differentiation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41418-024-01407-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-024-01407-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肝外胆管癌(ECC)是一种恶性程度很高的癌症,发病率不断上升,但由于治疗方法有限,预后较差。基于对 ECC 患者样本的基因组分析,我们在此报告醛酮还原酶家族 1 成员 C1(AKR1C1)在人类 ECC 组织中高表达,并与 ECC 的进展和不良预后密切相关。耐人寻味的是,我们发现诱导性 AKR1C1 敲除会引发 ECC 细胞发生铁变态反应。从机理上讲,AKR1C1 通过泛素-蛋白酶体降解,降低了细胞色素 P450 家族成员 CYP1B1 蛋白的稳定性,而 CYP1B1 是新发现的铁变态反应介质。此外,AKR1C1 还通过芳基烃受体(AHR)转录因子降低 CYP1B1 mRNA 水平。此外,AKR1C1-CYP1B1 轴还能通过 cAMP-PKA 信号通路调节 ECC 细胞中的铁变态反应。最后,在 ECC 的异种移植小鼠模型中,AKR1C1 的缺失会使癌细胞对铁凋亡敏感,并与铁凋亡诱导剂协同抑制肿瘤生长。因此,AKR1C1-CYP1B1-cAMP 信号轴是治疗 ECC 的一个很有前景的治疗靶点,尤其是与铁变态反应诱导剂联合使用时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The AKR1C1-CYP1B1-cAMP signaling axis controls tumorigenicity and ferroptosis susceptibility of extrahepatic cholangiocarcinoma.

Extrahepatic cholangiocarcinoma (ECC), a highly malignant type of cancer with increasing incidence, has a poor prognosis due to limited treatment options. Based on genomic analysis of ECC patient samples, here we report that aldo-keto reductase family 1 member C1 (AKR1C1) is highly expressed in human ECC tissues and closely associated with ECC progression and poor prognosis. Intriguingly, we show that inducible AKR1C1 knockdown triggers ECC cells to undergo ferroptosis. Mechanistically, AKR1C1 degrades the protein stability of the cytochrome P450 family member CYP1B1, a newly discovered mediator of ferroptosis, via ubiquitin-proteasomal degradation. Additionally, AKR1C1 decreases CYP1B1 mRNA level through the transcriptional factor aryl-hydrocarbon receptor (AHR). Furthermore, the AKR1C1-CYP1B1 axis modulates ferroptosis in ECC cells via the cAMP-PKA signaling pathway. Finally, in a xenograft mouse model of ECC, AKR1C1 depletion sensitizes cancer cells to ferroptosis and synergizes with ferroptosis inducers to suppress tumor growth. Therefore, the AKR1C1-CYP1B1-cAMP signaling axis is a promising therapeutic target for ECC treatment, especially in combination with ferroptosis inducers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Death and Differentiation
Cell Death and Differentiation 生物-生化与分子生物学
CiteScore
24.70
自引率
1.60%
发文量
181
审稿时长
3 months
期刊介绍: Mission, vision and values of Cell Death & Differentiation: To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease. To provide a unified forum for scientists and clinical researchers It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
期刊最新文献
UGT8 mediated sulfatide synthesis modulates BAX localization and dictates apoptosis sensitivity of colorectal cancer A novel hypoxia-induced lncRNA, SZT2-AS1, boosts HCC progression by mediating HIF heterodimerization and histone trimethylation under a hypoxic microenvironment Polyol pathway-generated fructose is indispensable for growth and survival of non-small cell lung cancer KBTBD2 controls bone development by regulating IGF-1 signaling during osteoblast differentiation ACBP/DBI neutralization for the experimental treatment of fatty liver disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1