{"title":"药理抑制磷酸甘油酸激酶 1 可降低氧化应激并恢复实验性急性胰腺炎中受损的自噬功能","authors":"Lin Chen, Zhihao Wang, Yuyan Zhang, Qingtian Zhu, Guotao Lu, Xiaowu Dong, Jiajia Pan, Keyan Wu, Weijuan Gong, Weiming Xiao, Yanbing Ding, Yanyan Zhang, Yaodong Wang","doi":"10.1007/s10753-024-02173-5","DOIUrl":null,"url":null,"abstract":"<p><p>Damage to pancreatic acinar cells (PAC) and intracellular metabolic disturbances play crucial roles in pancreatic necrosis during acute pancreatitis (AP). Phosphoglycerate kinase 1 (PGK1) is a crucial catalytic enzyme in glycolysis. However, the impact of PGK1-involving glycolysis in regulating metabolic necrosis in AP is unclear. Transcriptome analysis of pancreatic tissues revealed significant changes in the glycolysis pathway and PGK1 which positively correlated with the inflammatory response and oxidative stress injury in AP mice. Furthermore, we observed a substantial increase in PGK1 expression in damaged PAC, positively correlating with PAC necrosis. Treatment with NG52, a specific PGK1 inhibitor, ameliorated pancreatic necrosis, inflammatory damage, and oxidative stress. Transcriptomic data before and after NG52 treatment along with the Programmed Cell Death database confirmed that NG52 protected against PAC damage by rescuing impaired autophagy in AP. Additionally, the protective effect of NG52 was validated following pancreatic duct ligation. These findings underscore the involvement of PGK1 in AP pathogenesis, highlighting that PGK1 inhibition can mitigate AP-induced pancreatic necrosis, attenuate inflammatory and oxidative stress injury, and rescue impaired autophagy. Thus, the study findings suggest a promising interventional target for pancreatic necrosis, offering novel strategies for therapeutic approaches to clinical AP.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pharmacological Inhibition of Phosphoglycerate Kinase 1 Reduces OxiDative Stress and Restores Impaired Autophagy in Experimental Acute Pancreatitis.\",\"authors\":\"Lin Chen, Zhihao Wang, Yuyan Zhang, Qingtian Zhu, Guotao Lu, Xiaowu Dong, Jiajia Pan, Keyan Wu, Weijuan Gong, Weiming Xiao, Yanbing Ding, Yanyan Zhang, Yaodong Wang\",\"doi\":\"10.1007/s10753-024-02173-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Damage to pancreatic acinar cells (PAC) and intracellular metabolic disturbances play crucial roles in pancreatic necrosis during acute pancreatitis (AP). Phosphoglycerate kinase 1 (PGK1) is a crucial catalytic enzyme in glycolysis. However, the impact of PGK1-involving glycolysis in regulating metabolic necrosis in AP is unclear. Transcriptome analysis of pancreatic tissues revealed significant changes in the glycolysis pathway and PGK1 which positively correlated with the inflammatory response and oxidative stress injury in AP mice. Furthermore, we observed a substantial increase in PGK1 expression in damaged PAC, positively correlating with PAC necrosis. Treatment with NG52, a specific PGK1 inhibitor, ameliorated pancreatic necrosis, inflammatory damage, and oxidative stress. Transcriptomic data before and after NG52 treatment along with the Programmed Cell Death database confirmed that NG52 protected against PAC damage by rescuing impaired autophagy in AP. Additionally, the protective effect of NG52 was validated following pancreatic duct ligation. These findings underscore the involvement of PGK1 in AP pathogenesis, highlighting that PGK1 inhibition can mitigate AP-induced pancreatic necrosis, attenuate inflammatory and oxidative stress injury, and rescue impaired autophagy. Thus, the study findings suggest a promising interventional target for pancreatic necrosis, offering novel strategies for therapeutic approaches to clinical AP.</p>\",\"PeriodicalId\":13524,\"journal\":{\"name\":\"Inflammation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10753-024-02173-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-024-02173-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
胰腺尖叶细胞(PAC)受损和细胞内代谢紊乱在急性胰腺炎(AP)期间的胰腺坏死中起着至关重要的作用。磷酸甘油酸激酶 1(PGK1)是糖酵解过程中的一种重要催化酶。然而,PGK1参与糖酵解对调节急性胰腺炎代谢性坏死的影响尚不清楚。胰腺组织转录组分析显示,糖酵解途径和 PGK1 发生了显著变化,这与 AP 小鼠的炎症反应和氧化应激损伤呈正相关。此外,我们还观察到受损的 PAC 中 PGK1 表达量大幅增加,与 PAC 坏死呈正相关。使用特异性 PGK1 抑制剂 NG52 治疗可改善胰腺坏死、炎症损伤和氧化应激。NG52 治疗前后的转录组数据以及程序性细胞死亡数据库证实,NG52 可通过挽救 AP 中受损的自噬功能来防止 PAC 损伤。此外,NG52 的保护作用在胰腺导管结扎后也得到了验证。这些发现强调了 PGK1 在 AP 发病机制中的参与,突出表明抑制 PGK1 可减轻 AP 诱导的胰腺坏死,减轻炎症和氧化应激损伤,并挽救受损的自噬。因此,研究结果为胰腺坏死提供了一个很有前景的干预靶点,为临床 AP 的治疗方法提供了新的策略。
Pharmacological Inhibition of Phosphoglycerate Kinase 1 Reduces OxiDative Stress and Restores Impaired Autophagy in Experimental Acute Pancreatitis.
Damage to pancreatic acinar cells (PAC) and intracellular metabolic disturbances play crucial roles in pancreatic necrosis during acute pancreatitis (AP). Phosphoglycerate kinase 1 (PGK1) is a crucial catalytic enzyme in glycolysis. However, the impact of PGK1-involving glycolysis in regulating metabolic necrosis in AP is unclear. Transcriptome analysis of pancreatic tissues revealed significant changes in the glycolysis pathway and PGK1 which positively correlated with the inflammatory response and oxidative stress injury in AP mice. Furthermore, we observed a substantial increase in PGK1 expression in damaged PAC, positively correlating with PAC necrosis. Treatment with NG52, a specific PGK1 inhibitor, ameliorated pancreatic necrosis, inflammatory damage, and oxidative stress. Transcriptomic data before and after NG52 treatment along with the Programmed Cell Death database confirmed that NG52 protected against PAC damage by rescuing impaired autophagy in AP. Additionally, the protective effect of NG52 was validated following pancreatic duct ligation. These findings underscore the involvement of PGK1 in AP pathogenesis, highlighting that PGK1 inhibition can mitigate AP-induced pancreatic necrosis, attenuate inflammatory and oxidative stress injury, and rescue impaired autophagy. Thus, the study findings suggest a promising interventional target for pancreatic necrosis, offering novel strategies for therapeutic approaches to clinical AP.
期刊介绍:
Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.