{"title":"细菌获取宿主脂肪酸对毒力有深远影响。","authors":"Jack K Waters, Bart A Eijkelkamp","doi":"10.1128/mmbr.00126-24","DOIUrl":null,"url":null,"abstract":"<p><p>SUMMARYThe lipid homeostasis pathways of bacterial pathogens have been studied comprehensively for their biochemical functionality. However, new and refined technologies have supported the interrogation of bacterial lipid and fatty acid homeostasis mechanisms in more complex environments, such as mammalian host niches. In particular, emerging findings on the breadth and depth of host fatty acid uptake have demonstrated their importance beyond merely fatty acid utilization for membrane synthesis, as they can contribute to virulence factor regulation, pathogenesis, and group-based behaviors. Lipid homeostasis is also intertwined with other metabolic and physiological processes in the bacterial cells, which appear to be largely unique per species, but overarching themes can be derived. This review combines the latest biochemical and structural findings and places these in the context of bacterial pathogenesis, thereby shedding light on the far-reaching implications of lipid homeostasis on bacterial success.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0012624"},"PeriodicalIF":8.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacterial acquisition of host fatty acids has far-reaching implications on virulence.\",\"authors\":\"Jack K Waters, Bart A Eijkelkamp\",\"doi\":\"10.1128/mmbr.00126-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SUMMARYThe lipid homeostasis pathways of bacterial pathogens have been studied comprehensively for their biochemical functionality. However, new and refined technologies have supported the interrogation of bacterial lipid and fatty acid homeostasis mechanisms in more complex environments, such as mammalian host niches. In particular, emerging findings on the breadth and depth of host fatty acid uptake have demonstrated their importance beyond merely fatty acid utilization for membrane synthesis, as they can contribute to virulence factor regulation, pathogenesis, and group-based behaviors. Lipid homeostasis is also intertwined with other metabolic and physiological processes in the bacterial cells, which appear to be largely unique per species, but overarching themes can be derived. This review combines the latest biochemical and structural findings and places these in the context of bacterial pathogenesis, thereby shedding light on the far-reaching implications of lipid homeostasis on bacterial success.</p>\",\"PeriodicalId\":18520,\"journal\":{\"name\":\"Microbiology and Molecular Biology Reviews\",\"volume\":\" \",\"pages\":\"e0012624\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology and Molecular Biology Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mmbr.00126-24\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Molecular Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mmbr.00126-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Bacterial acquisition of host fatty acids has far-reaching implications on virulence.
SUMMARYThe lipid homeostasis pathways of bacterial pathogens have been studied comprehensively for their biochemical functionality. However, new and refined technologies have supported the interrogation of bacterial lipid and fatty acid homeostasis mechanisms in more complex environments, such as mammalian host niches. In particular, emerging findings on the breadth and depth of host fatty acid uptake have demonstrated their importance beyond merely fatty acid utilization for membrane synthesis, as they can contribute to virulence factor regulation, pathogenesis, and group-based behaviors. Lipid homeostasis is also intertwined with other metabolic and physiological processes in the bacterial cells, which appear to be largely unique per species, but overarching themes can be derived. This review combines the latest biochemical and structural findings and places these in the context of bacterial pathogenesis, thereby shedding light on the far-reaching implications of lipid homeostasis on bacterial success.
期刊介绍:
Microbiology and Molecular Biology Reviews (MMBR), a journal that explores the significance and interrelationships of recent discoveries in various microbiology fields, publishes review articles that help both specialists and nonspecialists understand and apply the latest findings in their own research. MMBR covers a wide range of topics in microbiology, including microbial ecology, evolution, parasitology, biotechnology, and immunology. The journal caters to scientists with diverse interests in all areas of microbial science and encompasses viruses, bacteria, archaea, fungi, unicellular eukaryotes, and microbial parasites. MMBR primarily publishes authoritative and critical reviews that push the boundaries of knowledge, appealing to both specialists and generalists. The journal often includes descriptive figures and tables to enhance understanding. Indexed/Abstracted in various databases such as Agricola, BIOSIS Previews, CAB Abstracts, Cambridge Scientific Abstracts, Chemical Abstracts Service, Current Contents- Life Sciences, EMBASE, Food Science and Technology Abstracts, Illustrata, MEDLINE, Science Citation Index Expanded (Web of Science), Summon, and Scopus, among others.