Melia azedarach 与硝酸银的协同植物化学和纳米技术探索:阐明多方面的抗菌、抗氧化、抗糖尿病和杀虫潜力。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-10-31 DOI:10.1002/jemt.24721
Asad Husain Shah, Ameena Khan, Neelam Khan, Sammyia Jannat, Khaloud Mohammed Alarjan, Mohamed S Elshikh, Afshan Afareen, Hajra Hameed
{"title":"Melia azedarach 与硝酸银的协同植物化学和纳米技术探索:阐明多方面的抗菌、抗氧化、抗糖尿病和杀虫潜力。","authors":"Asad Husain Shah, Ameena Khan, Neelam Khan, Sammyia Jannat, Khaloud Mohammed Alarjan, Mohamed S Elshikh, Afshan Afareen, Hajra Hameed","doi":"10.1002/jemt.24721","DOIUrl":null,"url":null,"abstract":"<p><p>Plants are a rich source of bioactive compounds with significant pharmaceutical and health applications. This study explores the phytochemical, therapeutic, and phytotoxic properties of Melia azedarach by analyzing extracts from its bark, flowers, leaves, and fruits using six solvents: ethanol, methanol, acetone, hexane, chloroform, and distilled water. Twenty-one phytochemical tests were conducted, revealing significantly positive results for various tests. However, the ethanolic and methanolic flower extracts yielded no significant results in other tests. The highest total phenolic content was found in the chloroform extract of the leaves (96 ± 0.01 mg/100 g), and the highest antioxidant activity was observed in the ethanolic and hexane leaf extracts, with a 98% DPPH scavenging rate. Antibacterial testing showed significant efficacy against Serratia marcescens, Bacillus subtilis, Kluyvera spp., and Pseudomonas spp., with p values < 0.0001. The fruit chloroform extract demonstrated the highest alpha-amylase inhibition (93 ± 0.05), while the ethanolic leaf extract had the greatest tumor inhibition (85.6 ± 0.5). Insecticidal assays revealed that the acetone bark extract had the highest control values (56% and 57%). Due to their higher reducing potential, the leaves were used to biosynthesize silver nanoparticles (AgNPs), characterized by UV-Vis spectroscopy, EDX, and SEM, revealing an average particle size of 20-30 nm and spherical morphology. The AgNPs exhibited excellent antibacterial, antioxidant, antidiabetic, and insecticidal activities. These findings highlight the potential of M. azedarach and its AgNPs for developing novel therapeutic agents.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Phytochemical and Nanotechnological Exploration of Melia azedarach With Silver Nitrate: Elucidating Multifaceted Antimicrobial, Antioxidant, Antidiabetic, and Insecticidal Potentials.\",\"authors\":\"Asad Husain Shah, Ameena Khan, Neelam Khan, Sammyia Jannat, Khaloud Mohammed Alarjan, Mohamed S Elshikh, Afshan Afareen, Hajra Hameed\",\"doi\":\"10.1002/jemt.24721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants are a rich source of bioactive compounds with significant pharmaceutical and health applications. This study explores the phytochemical, therapeutic, and phytotoxic properties of Melia azedarach by analyzing extracts from its bark, flowers, leaves, and fruits using six solvents: ethanol, methanol, acetone, hexane, chloroform, and distilled water. Twenty-one phytochemical tests were conducted, revealing significantly positive results for various tests. However, the ethanolic and methanolic flower extracts yielded no significant results in other tests. The highest total phenolic content was found in the chloroform extract of the leaves (96 ± 0.01 mg/100 g), and the highest antioxidant activity was observed in the ethanolic and hexane leaf extracts, with a 98% DPPH scavenging rate. Antibacterial testing showed significant efficacy against Serratia marcescens, Bacillus subtilis, Kluyvera spp., and Pseudomonas spp., with p values < 0.0001. The fruit chloroform extract demonstrated the highest alpha-amylase inhibition (93 ± 0.05), while the ethanolic leaf extract had the greatest tumor inhibition (85.6 ± 0.5). Insecticidal assays revealed that the acetone bark extract had the highest control values (56% and 57%). Due to their higher reducing potential, the leaves were used to biosynthesize silver nanoparticles (AgNPs), characterized by UV-Vis spectroscopy, EDX, and SEM, revealing an average particle size of 20-30 nm and spherical morphology. The AgNPs exhibited excellent antibacterial, antioxidant, antidiabetic, and insecticidal activities. These findings highlight the potential of M. azedarach and its AgNPs for developing novel therapeutic agents.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/jemt.24721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

植物是生物活性化合物的丰富来源,具有重要的医药和保健用途。本研究通过使用乙醇、甲醇、丙酮、正己烷、氯仿和蒸馏水六种溶剂分析 Melia azedarach 树皮、花、叶和果实的提取物,探索其植物化学、治疗和植物毒性特性。共进行了 21 项植物化学测试,结果显示各种测试均呈显著阳性。不过,乙醇和甲醇花提取物在其他测试中没有得出明显结果。叶片氯仿提取物的总酚含量最高(96 ± 0.01 mg/100 g),叶片乙醇提取物和正己烷提取物的抗氧化活性最高,DPPH 清除率达 98%。抗菌测试表明,叶提取物对 Serratia marcescens、枯草芽孢杆菌、Kluyvera spp.和 Pseudomonas spp.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergistic Phytochemical and Nanotechnological Exploration of Melia azedarach With Silver Nitrate: Elucidating Multifaceted Antimicrobial, Antioxidant, Antidiabetic, and Insecticidal Potentials.

Plants are a rich source of bioactive compounds with significant pharmaceutical and health applications. This study explores the phytochemical, therapeutic, and phytotoxic properties of Melia azedarach by analyzing extracts from its bark, flowers, leaves, and fruits using six solvents: ethanol, methanol, acetone, hexane, chloroform, and distilled water. Twenty-one phytochemical tests were conducted, revealing significantly positive results for various tests. However, the ethanolic and methanolic flower extracts yielded no significant results in other tests. The highest total phenolic content was found in the chloroform extract of the leaves (96 ± 0.01 mg/100 g), and the highest antioxidant activity was observed in the ethanolic and hexane leaf extracts, with a 98% DPPH scavenging rate. Antibacterial testing showed significant efficacy against Serratia marcescens, Bacillus subtilis, Kluyvera spp., and Pseudomonas spp., with p values < 0.0001. The fruit chloroform extract demonstrated the highest alpha-amylase inhibition (93 ± 0.05), while the ethanolic leaf extract had the greatest tumor inhibition (85.6 ± 0.5). Insecticidal assays revealed that the acetone bark extract had the highest control values (56% and 57%). Due to their higher reducing potential, the leaves were used to biosynthesize silver nanoparticles (AgNPs), characterized by UV-Vis spectroscopy, EDX, and SEM, revealing an average particle size of 20-30 nm and spherical morphology. The AgNPs exhibited excellent antibacterial, antioxidant, antidiabetic, and insecticidal activities. These findings highlight the potential of M. azedarach and its AgNPs for developing novel therapeutic agents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
Similarities and differences between chronic primary pain and depression in brain activities: Evidence from resting-state microstates and auditory Oddball task. A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1