{"title":"方解石沉淀:湖泊碳循环中被遗忘的部分。","authors":"Gaël Many, Nicolas Escoffier, Pascal Perolo, Fabian Bärenbold, Damien Bouffard, Marie-Elodie Perga","doi":"10.1126/sciadv.ado5924","DOIUrl":null,"url":null,"abstract":"<div >Lakes emit substantial amounts of carbon dioxide (CO<sub>2</sub>) into the atmosphere, but why they do remains debated. The long-standing vision of lakes as solely respirators of the organic matter leaking from the soils has been challenged by evidence that inorganic carbon produced by weathering of the catchment bedrock could also support lake CO<sub>2</sub> emissions. How inorganic carbon inputs ultimately generate lake CO<sub>2</sub> outgassing remains a blind spot. We develop and introduce a calcite module in a coupled one-dimensional physical-biogeochemical model that we use to simulate the carbon cycle of the large Lake Geneva over the past 40 years. We mechanistically demonstrate how the so-far neglected process of calcite precipitation boosts net CO<sub>2</sub> emissions at the annual scale. Far from being anecdotal, we show that calcite precipitation could explain CO<sub>2</sub> outgassing across various lakes globally, including some of the largest lakes in the world.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ado5924","citationCount":"0","resultStr":"{\"title\":\"Calcite precipitation: The forgotten piece of lakes’ carbon cycle\",\"authors\":\"Gaël Many, Nicolas Escoffier, Pascal Perolo, Fabian Bärenbold, Damien Bouffard, Marie-Elodie Perga\",\"doi\":\"10.1126/sciadv.ado5924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Lakes emit substantial amounts of carbon dioxide (CO<sub>2</sub>) into the atmosphere, but why they do remains debated. The long-standing vision of lakes as solely respirators of the organic matter leaking from the soils has been challenged by evidence that inorganic carbon produced by weathering of the catchment bedrock could also support lake CO<sub>2</sub> emissions. How inorganic carbon inputs ultimately generate lake CO<sub>2</sub> outgassing remains a blind spot. We develop and introduce a calcite module in a coupled one-dimensional physical-biogeochemical model that we use to simulate the carbon cycle of the large Lake Geneva over the past 40 years. We mechanistically demonstrate how the so-far neglected process of calcite precipitation boosts net CO<sub>2</sub> emissions at the annual scale. Far from being anecdotal, we show that calcite precipitation could explain CO<sub>2</sub> outgassing across various lakes globally, including some of the largest lakes in the world.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.ado5924\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.ado5924\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ado5924","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Calcite precipitation: The forgotten piece of lakes’ carbon cycle
Lakes emit substantial amounts of carbon dioxide (CO2) into the atmosphere, but why they do remains debated. The long-standing vision of lakes as solely respirators of the organic matter leaking from the soils has been challenged by evidence that inorganic carbon produced by weathering of the catchment bedrock could also support lake CO2 emissions. How inorganic carbon inputs ultimately generate lake CO2 outgassing remains a blind spot. We develop and introduce a calcite module in a coupled one-dimensional physical-biogeochemical model that we use to simulate the carbon cycle of the large Lake Geneva over the past 40 years. We mechanistically demonstrate how the so-far neglected process of calcite precipitation boosts net CO2 emissions at the annual scale. Far from being anecdotal, we show that calcite precipitation could explain CO2 outgassing across various lakes globally, including some of the largest lakes in the world.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.