Cristina Román-Zas, Borja Ferreiro, Javier Terán-Baamonde, M. Estela Del Castillo Busto, José M. Andrade, Soledad Muniategui
{"title":"使用传统和量子级联激光红外光谱法测量轮胎微塑料。","authors":"Cristina Román-Zas, Borja Ferreiro, Javier Terán-Baamonde, M. Estela Del Castillo Busto, José M. Andrade, Soledad Muniategui","doi":"10.1016/j.saa.2024.125321","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Despite the potential environmental impact of TWPs (tyre wear particles), there is a lack of reliable analytical methodologies suitable for their routine identification and characterization. The number of papers dealing with this topic is, so far, very reduced and, therefore, there is a need for addressing it, mostly because traditional transmittance-based IR techniques are suboptimal due to scattering caused by black carbon in tyres.</div></div><div><h3>Results</h3><div>This study aims to evaluate the most appropriate infrared (IR) spectrometric technique for monitoring TWPs. Macro attenuated total reflectance (ATR), reflectance microscopy, and quantum cascade laser-based micro transflectance (QCL-LDIR) were employed to analyse samples from used car and truck tyres in two sample configurations: small tyre fragments (∼1 cm<sup>2</sup>) and TWPs (< 1 mm). ATR yielded well-defined spectra with good signal-to-noise ratios, allowing for a straightforward interpretation of the major functional moieties. Despite reflectance measurements on tyre fragments provided good results, those on TWPs offered limited information due to noise and scattering. Transflectance offered clear peaks and enhanced resolution in the fingerprint region –compared to the other techniques-, much faster analysis times and the ability to effectively measure particles down to 20–10 µm, thus, emerging as the most effective technique for TWPs analysis. However, spectral interpretation is not immediate. Further, a proof-of-concept chemometric study was done to evaluate whether the analytical techniques contain information to differentiate types of tyres. An unsupervised pattern recognition and a supervised classification technique (principal components analysis and classification trees, respectively) were used, which were able to differentiate among the tyres, notably the truck tyre from the cars tyres.</div></div><div><h3>Significance</h3><div>The study presents first time the use of micro transflectance IR to study tyre particles down to 20 µm. Traditional total attenuated reflectance is demonstrated as a suitable way to analyse bigger microplastics. These two options open pathways to monitor this important emerging contaminant in environmental matrices.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"327 ","pages":"Article 125321"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of tyre-based microplastics using traditional and quantum cascade laser-based infrared spectrometry\",\"authors\":\"Cristina Román-Zas, Borja Ferreiro, Javier Terán-Baamonde, M. Estela Del Castillo Busto, José M. Andrade, Soledad Muniategui\",\"doi\":\"10.1016/j.saa.2024.125321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Despite the potential environmental impact of TWPs (tyre wear particles), there is a lack of reliable analytical methodologies suitable for their routine identification and characterization. The number of papers dealing with this topic is, so far, very reduced and, therefore, there is a need for addressing it, mostly because traditional transmittance-based IR techniques are suboptimal due to scattering caused by black carbon in tyres.</div></div><div><h3>Results</h3><div>This study aims to evaluate the most appropriate infrared (IR) spectrometric technique for monitoring TWPs. Macro attenuated total reflectance (ATR), reflectance microscopy, and quantum cascade laser-based micro transflectance (QCL-LDIR) were employed to analyse samples from used car and truck tyres in two sample configurations: small tyre fragments (∼1 cm<sup>2</sup>) and TWPs (< 1 mm). ATR yielded well-defined spectra with good signal-to-noise ratios, allowing for a straightforward interpretation of the major functional moieties. Despite reflectance measurements on tyre fragments provided good results, those on TWPs offered limited information due to noise and scattering. Transflectance offered clear peaks and enhanced resolution in the fingerprint region –compared to the other techniques-, much faster analysis times and the ability to effectively measure particles down to 20–10 µm, thus, emerging as the most effective technique for TWPs analysis. However, spectral interpretation is not immediate. Further, a proof-of-concept chemometric study was done to evaluate whether the analytical techniques contain information to differentiate types of tyres. An unsupervised pattern recognition and a supervised classification technique (principal components analysis and classification trees, respectively) were used, which were able to differentiate among the tyres, notably the truck tyre from the cars tyres.</div></div><div><h3>Significance</h3><div>The study presents first time the use of micro transflectance IR to study tyre particles down to 20 µm. Traditional total attenuated reflectance is demonstrated as a suitable way to analyse bigger microplastics. These two options open pathways to monitor this important emerging contaminant in environmental matrices.</div></div>\",\"PeriodicalId\":433,\"journal\":{\"name\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"volume\":\"327 \",\"pages\":\"Article 125321\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386142524014872\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142524014872","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Measurement of tyre-based microplastics using traditional and quantum cascade laser-based infrared spectrometry
Background
Despite the potential environmental impact of TWPs (tyre wear particles), there is a lack of reliable analytical methodologies suitable for their routine identification and characterization. The number of papers dealing with this topic is, so far, very reduced and, therefore, there is a need for addressing it, mostly because traditional transmittance-based IR techniques are suboptimal due to scattering caused by black carbon in tyres.
Results
This study aims to evaluate the most appropriate infrared (IR) spectrometric technique for monitoring TWPs. Macro attenuated total reflectance (ATR), reflectance microscopy, and quantum cascade laser-based micro transflectance (QCL-LDIR) were employed to analyse samples from used car and truck tyres in two sample configurations: small tyre fragments (∼1 cm2) and TWPs (< 1 mm). ATR yielded well-defined spectra with good signal-to-noise ratios, allowing for a straightforward interpretation of the major functional moieties. Despite reflectance measurements on tyre fragments provided good results, those on TWPs offered limited information due to noise and scattering. Transflectance offered clear peaks and enhanced resolution in the fingerprint region –compared to the other techniques-, much faster analysis times and the ability to effectively measure particles down to 20–10 µm, thus, emerging as the most effective technique for TWPs analysis. However, spectral interpretation is not immediate. Further, a proof-of-concept chemometric study was done to evaluate whether the analytical techniques contain information to differentiate types of tyres. An unsupervised pattern recognition and a supervised classification technique (principal components analysis and classification trees, respectively) were used, which were able to differentiate among the tyres, notably the truck tyre from the cars tyres.
Significance
The study presents first time the use of micro transflectance IR to study tyre particles down to 20 µm. Traditional total attenuated reflectance is demonstrated as a suitable way to analyse bigger microplastics. These two options open pathways to monitor this important emerging contaminant in environmental matrices.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.