{"title":"采用聚电解质络合方法为水下电子设备开发基于 PEDOT:PSS 的可模塑、自愈合和超拉伸固体电解质","authors":"Shrinkhala Anand, Arpan Tewary, Chandan Upadhyay, Akhoury Sudhir Kumar Sinha and Umaprasana Ojha*, ","doi":"10.1021/acsaelm.4c0127810.1021/acsaelm.4c01278","DOIUrl":null,"url":null,"abstract":"<p >PEDOT:PSS-based systems possessing effective optoelectronic behavior are promising for metal particle-free flexible electronics applications. However, these systems currently suffer from low stretchability, mechanical resilience, and performance in aqueous media. In this article, polyelectrolyte complexation between polyacryloyl hydrazide triflate (PAHT) and polystyrenesulfonate (PSS) is utilized to devise conducting ink with tunable viscosity at high PEDOT loading for fabricating stretchable, self-healable, and conductive solid electrolytes for flexible electronics applications. The possible ionic linkages (CONHNH<sub>3</sub><sup>+</sup>---SO<sub>3</sub>̅ and SO<sub>3</sub>̅---CS<sup>+</sup>) between the polymeric segments enabled film integrity in various organic and aqueous media and imparted effective tensile strength (0.10 MPa) and stretchability (∼1120%), while maintaining effective ionic conductivity (0.18 S/cm). The film displayed an effective Δ<i>R</i>/<i>R</i><sub>0</sub> value of ∼26.2 at 600% stretching. As a proof of concept, the ability of these solid electrolytes toward strain-sensing application was studied. The system was able to display repeatable change in Δ<i>R</i>/<i>R</i><sub>0</sub> values in response to various bodily movements under submersible conditions and adequate Gauge factor values of 4.4 and 0.20 under environmental and underwater conditions supporting its viability toward strain-sensing applications.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"6 10","pages":"7380–7391 7380–7391"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyelectrolyte Complexation Approach to Devise PEDOT:PSS-Based Moldable, Self-Healable, and Ultra-Stretchable Solid Electrolytes for Underwater Electronics\",\"authors\":\"Shrinkhala Anand, Arpan Tewary, Chandan Upadhyay, Akhoury Sudhir Kumar Sinha and Umaprasana Ojha*, \",\"doi\":\"10.1021/acsaelm.4c0127810.1021/acsaelm.4c01278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >PEDOT:PSS-based systems possessing effective optoelectronic behavior are promising for metal particle-free flexible electronics applications. However, these systems currently suffer from low stretchability, mechanical resilience, and performance in aqueous media. In this article, polyelectrolyte complexation between polyacryloyl hydrazide triflate (PAHT) and polystyrenesulfonate (PSS) is utilized to devise conducting ink with tunable viscosity at high PEDOT loading for fabricating stretchable, self-healable, and conductive solid electrolytes for flexible electronics applications. The possible ionic linkages (CONHNH<sub>3</sub><sup>+</sup>---SO<sub>3</sub>̅ and SO<sub>3</sub>̅---CS<sup>+</sup>) between the polymeric segments enabled film integrity in various organic and aqueous media and imparted effective tensile strength (0.10 MPa) and stretchability (∼1120%), while maintaining effective ionic conductivity (0.18 S/cm). The film displayed an effective Δ<i>R</i>/<i>R</i><sub>0</sub> value of ∼26.2 at 600% stretching. As a proof of concept, the ability of these solid electrolytes toward strain-sensing application was studied. The system was able to display repeatable change in Δ<i>R</i>/<i>R</i><sub>0</sub> values in response to various bodily movements under submersible conditions and adequate Gauge factor values of 4.4 and 0.20 under environmental and underwater conditions supporting its viability toward strain-sensing applications.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"6 10\",\"pages\":\"7380–7391 7380–7391\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.4c01278\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c01278","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Polyelectrolyte Complexation Approach to Devise PEDOT:PSS-Based Moldable, Self-Healable, and Ultra-Stretchable Solid Electrolytes for Underwater Electronics
PEDOT:PSS-based systems possessing effective optoelectronic behavior are promising for metal particle-free flexible electronics applications. However, these systems currently suffer from low stretchability, mechanical resilience, and performance in aqueous media. In this article, polyelectrolyte complexation between polyacryloyl hydrazide triflate (PAHT) and polystyrenesulfonate (PSS) is utilized to devise conducting ink with tunable viscosity at high PEDOT loading for fabricating stretchable, self-healable, and conductive solid electrolytes for flexible electronics applications. The possible ionic linkages (CONHNH3+---SO3̅ and SO3̅---CS+) between the polymeric segments enabled film integrity in various organic and aqueous media and imparted effective tensile strength (0.10 MPa) and stretchability (∼1120%), while maintaining effective ionic conductivity (0.18 S/cm). The film displayed an effective ΔR/R0 value of ∼26.2 at 600% stretching. As a proof of concept, the ability of these solid electrolytes toward strain-sensing application was studied. The system was able to display repeatable change in ΔR/R0 values in response to various bodily movements under submersible conditions and adequate Gauge factor values of 4.4 and 0.20 under environmental and underwater conditions supporting its viability toward strain-sensing applications.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico