Maxime H.J.-J. François , Vanja Buvik , Kai Vernstad , Hanna K. Knuutila
{"title":"评估水性 MEA 和 1-(2HE)PRLD 与 3A1P 混合液中胺降解化合物的挥发性","authors":"Maxime H.J.-J. François , Vanja Buvik , Kai Vernstad , Hanna K. Knuutila","doi":"10.1016/j.ccst.2024.100326","DOIUrl":null,"url":null,"abstract":"<div><div>Amine-based carbon capture has proven to be a mature technology, but challenges remain. Emission control of potentially hazardous compounds is critical to ensure the long-term viability of the technology. The ability to predict which compounds to expect in gas emissions and at what levels is fundamental. This work aims to provide a qualitative and quantitative assessment of the volatility of both MEA and HS3 blend degradation products. VLE experiments were performed with different degraded solutions over a temperature range from 40 to 100 °C. Samples were analyzed using extensive LC-MS methods to quantify over 40 degradation compounds. Henry's constants were calculated to assess their volatility. The compiled results allow the ranking of most of the compounds studied in terms of volatility, and the quantification of their relative volatility compared to each other. Pyrazines and alkylamines are among the most volatile, followed by aldehydes, ketones, nitrosamines, and finally, larger amides. When compared, the volatilities of the degradation compounds are consistent from one degraded solution to another, highlighting the possibility of generalization from one solvent to another. This consistency is also observed with the dilute version of the degraded solutions simulating water-wash conditions. Finally, this work provides insight into the temperature dependence of the volatilities of the compounds studied. The methodology used provides a valuable and new type of data that have never been published before on the volatility of amine degradation compounds. The results can be used to better understand emissions and the design of emission control technologies.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of the volatility of amine degradation compounds in aqueous MEA and blend of 1-(2HE)PRLD and 3A1P\",\"authors\":\"Maxime H.J.-J. François , Vanja Buvik , Kai Vernstad , Hanna K. Knuutila\",\"doi\":\"10.1016/j.ccst.2024.100326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Amine-based carbon capture has proven to be a mature technology, but challenges remain. Emission control of potentially hazardous compounds is critical to ensure the long-term viability of the technology. The ability to predict which compounds to expect in gas emissions and at what levels is fundamental. This work aims to provide a qualitative and quantitative assessment of the volatility of both MEA and HS3 blend degradation products. VLE experiments were performed with different degraded solutions over a temperature range from 40 to 100 °C. Samples were analyzed using extensive LC-MS methods to quantify over 40 degradation compounds. Henry's constants were calculated to assess their volatility. The compiled results allow the ranking of most of the compounds studied in terms of volatility, and the quantification of their relative volatility compared to each other. Pyrazines and alkylamines are among the most volatile, followed by aldehydes, ketones, nitrosamines, and finally, larger amides. When compared, the volatilities of the degradation compounds are consistent from one degraded solution to another, highlighting the possibility of generalization from one solvent to another. This consistency is also observed with the dilute version of the degraded solutions simulating water-wash conditions. Finally, this work provides insight into the temperature dependence of the volatilities of the compounds studied. The methodology used provides a valuable and new type of data that have never been published before on the volatility of amine degradation compounds. The results can be used to better understand emissions and the design of emission control technologies.</div></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656824001386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824001386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
胺基碳捕集已被证明是一项成熟的技术,但挑战依然存在。潜在危险化合物的排放控制对于确保该技术的长期可行性至关重要。预测气体排放中会出现哪些化合物以及其含量的能力至关重要。这项工作旨在对 MEA 和 HS3 混合降解产物的挥发性进行定性和定量评估。在 40 至 100 °C 的温度范围内,对不同的降解溶液进行了 VLE 实验。使用广泛的 LC-MS 方法对样品进行分析,以量化 40 多种降解化合物。通过计算亨利常数来评估它们的挥发性。根据汇总的结果,可以对所研究的大部分化合物的挥发性进行排序,并量化它们之间的相对挥发性。吡嗪和烷基胺的挥发性最强,其次是醛、酮、亚硝胺,最后是较大的酰胺。经过比较,不同降解溶液中降解化合物的挥发性是一致的,这说明从一种溶剂到另一种溶剂可以通用。在模拟水洗条件的稀释降解溶液中也观察到了这种一致性。最后,这项研究还深入探讨了所研究化合物的挥发性与温度的关系。所使用的方法提供了有关胺降解化合物挥发性的有价值的新型数据,这些数据以前从未发表过。研究结果可用于更好地了解排放和排放控制技术的设计。
Assessment of the volatility of amine degradation compounds in aqueous MEA and blend of 1-(2HE)PRLD and 3A1P
Amine-based carbon capture has proven to be a mature technology, but challenges remain. Emission control of potentially hazardous compounds is critical to ensure the long-term viability of the technology. The ability to predict which compounds to expect in gas emissions and at what levels is fundamental. This work aims to provide a qualitative and quantitative assessment of the volatility of both MEA and HS3 blend degradation products. VLE experiments were performed with different degraded solutions over a temperature range from 40 to 100 °C. Samples were analyzed using extensive LC-MS methods to quantify over 40 degradation compounds. Henry's constants were calculated to assess their volatility. The compiled results allow the ranking of most of the compounds studied in terms of volatility, and the quantification of their relative volatility compared to each other. Pyrazines and alkylamines are among the most volatile, followed by aldehydes, ketones, nitrosamines, and finally, larger amides. When compared, the volatilities of the degradation compounds are consistent from one degraded solution to another, highlighting the possibility of generalization from one solvent to another. This consistency is also observed with the dilute version of the degraded solutions simulating water-wash conditions. Finally, this work provides insight into the temperature dependence of the volatilities of the compounds studied. The methodology used provides a valuable and new type of data that have never been published before on the volatility of amine degradation compounds. The results can be used to better understand emissions and the design of emission control technologies.