Sara Linciano , Emilia Vigolo , Antonio Rosato , Yoichi Kumada , Alessandro Angelini
{"title":"在癌症治疗中有效延长小型免疫调节有效载荷循环半衰期的基于白蛋白的策略","authors":"Sara Linciano , Emilia Vigolo , Antonio Rosato , Yoichi Kumada , Alessandro Angelini","doi":"10.1016/j.copbio.2024.103218","DOIUrl":null,"url":null,"abstract":"<div><div>Small immunomodulatory payloads (IMMs) such as peptide vaccines and cytokines have the capability to activate and boost the immune response against cancer. However, their clinical use has often been hindered by their poor stability and short circulating half-lives. To enhance the pharmacokinetic properties of small IMMs and promote their trafficking and accumulation in lymphatic and tumor tissues, a large variety of strategies have been developed. One of the most successful relies on the use of serum albumin (SA), the most abundant protein in the circulatory and lymphatic system. Here, we report a comparative analysis of the different covalent and noncovalent SA-based strategies applied so far to improve the efficacy of small IMMs in cancer therapy.</div></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"90 ","pages":"Article 103218"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Albumin-based strategies to effectively prolong the circulation half-life of small immunomodulatory payloads in cancer therapy\",\"authors\":\"Sara Linciano , Emilia Vigolo , Antonio Rosato , Yoichi Kumada , Alessandro Angelini\",\"doi\":\"10.1016/j.copbio.2024.103218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Small immunomodulatory payloads (IMMs) such as peptide vaccines and cytokines have the capability to activate and boost the immune response against cancer. However, their clinical use has often been hindered by their poor stability and short circulating half-lives. To enhance the pharmacokinetic properties of small IMMs and promote their trafficking and accumulation in lymphatic and tumor tissues, a large variety of strategies have been developed. One of the most successful relies on the use of serum albumin (SA), the most abundant protein in the circulatory and lymphatic system. Here, we report a comparative analysis of the different covalent and noncovalent SA-based strategies applied so far to improve the efficacy of small IMMs in cancer therapy.</div></div>\",\"PeriodicalId\":10833,\"journal\":{\"name\":\"Current opinion in biotechnology\",\"volume\":\"90 \",\"pages\":\"Article 103218\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095816692400154X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095816692400154X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
肽疫苗和细胞因子等小型免疫调节有效载荷(IMMs)具有激活和增强抗癌免疫反应的能力。然而,它们的稳定性差、循环半衰期短,往往阻碍了它们的临床应用。为了提高小型 IMMs 的药代动力学特性,促进它们在淋巴和肿瘤组织中的运输和积累,人们开发了多种策略。最成功的策略之一是使用血清白蛋白(SA),它是循环和淋巴系统中最丰富的蛋白质。在这里,我们报告了迄今为止为提高小型 IMMs 在癌症治疗中的疗效而应用的基于共价和非共价 SA 的不同策略的比较分析。
Albumin-based strategies to effectively prolong the circulation half-life of small immunomodulatory payloads in cancer therapy
Small immunomodulatory payloads (IMMs) such as peptide vaccines and cytokines have the capability to activate and boost the immune response against cancer. However, their clinical use has often been hindered by their poor stability and short circulating half-lives. To enhance the pharmacokinetic properties of small IMMs and promote their trafficking and accumulation in lymphatic and tumor tissues, a large variety of strategies have been developed. One of the most successful relies on the use of serum albumin (SA), the most abundant protein in the circulatory and lymphatic system. Here, we report a comparative analysis of the different covalent and noncovalent SA-based strategies applied so far to improve the efficacy of small IMMs in cancer therapy.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.