用于工艺强化的气液和液液涡流技术

IF 8 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Current Opinion in Chemical Engineering Pub Date : 2024-10-31 DOI:10.1016/j.coche.2024.101056
Afroditi Kourou, Siyuan Chen, Yi Ouyang
{"title":"用于工艺强化的气液和液液涡流技术","authors":"Afroditi Kourou,&nbsp;Siyuan Chen,&nbsp;Yi Ouyang","doi":"10.1016/j.coche.2024.101056","DOIUrl":null,"url":null,"abstract":"<div><div>The quest for efficient, sustainable chemical processes drives the advancement of process intensification methods. This study evaluates vortex technology, which utilizes controlled, confined swirling flows to enhance mixing and mass and heat transfer, improving process efficiency. Its potential is assessed by examining its principles, design and optimization parameters, current and prospective applications, and challenges in scaling up and commercialization. It is particularly suited when enhanced efficiency in mixing, transport performance, and cavitation is required, especially in systems involving fast reactions, short residence times, and space constraints. Furthermore, it shows promise in developing compact and efficient contacting devices with reduced energy consumption.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gas–liquid and liquid–liquid vortex technology for process intensification\",\"authors\":\"Afroditi Kourou,&nbsp;Siyuan Chen,&nbsp;Yi Ouyang\",\"doi\":\"10.1016/j.coche.2024.101056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The quest for efficient, sustainable chemical processes drives the advancement of process intensification methods. This study evaluates vortex technology, which utilizes controlled, confined swirling flows to enhance mixing and mass and heat transfer, improving process efficiency. Its potential is assessed by examining its principles, design and optimization parameters, current and prospective applications, and challenges in scaling up and commercialization. It is particularly suited when enhanced efficiency in mixing, transport performance, and cavitation is required, especially in systems involving fast reactions, short residence times, and space constraints. Furthermore, it shows promise in developing compact and efficient contacting devices with reduced energy consumption.</div></div>\",\"PeriodicalId\":292,\"journal\":{\"name\":\"Current Opinion in Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211339824000571\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339824000571","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

对高效、可持续化学工艺的追求推动着工艺强化方法的进步。本研究对涡流技术进行了评估,该技术利用受控的封闭漩涡流来加强混合、传质和传热,从而提高工艺效率。通过研究其原理、设计和优化参数、当前和未来的应用,以及扩大规模和商业化方面的挑战,对其潜力进行了评估。当需要提高混合、传输性能和空化效率时,尤其是在涉及快速反应、短停留时间和空间限制的系统中,它尤为适用。此外,它还显示了开发能耗更低的紧凑型高效接触装置的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gas–liquid and liquid–liquid vortex technology for process intensification
The quest for efficient, sustainable chemical processes drives the advancement of process intensification methods. This study evaluates vortex technology, which utilizes controlled, confined swirling flows to enhance mixing and mass and heat transfer, improving process efficiency. Its potential is assessed by examining its principles, design and optimization parameters, current and prospective applications, and challenges in scaling up and commercialization. It is particularly suited when enhanced efficiency in mixing, transport performance, and cavitation is required, especially in systems involving fast reactions, short residence times, and space constraints. Furthermore, it shows promise in developing compact and efficient contacting devices with reduced energy consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Chemical Engineering
Current Opinion in Chemical Engineering BIOTECHNOLOGY & APPLIED MICROBIOLOGYENGINE-ENGINEERING, CHEMICAL
CiteScore
12.80
自引率
3.00%
发文量
114
期刊介绍: Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published. The goals of each review article in Current Opinion in Chemical Engineering are: 1. To acquaint the reader/researcher with the most important recent papers in the given topic. 2. To provide the reader with the views/opinions of the expert in each topic. The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts. Themed sections: Each review will focus on particular aspects of one of the following themed sections of chemical engineering: 1. Nanotechnology 2. Energy and environmental engineering 3. Biotechnology and bioprocess engineering 4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery) 5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.) 6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials). 7. Process systems engineering 8. Reaction engineering and catalysis.
期刊最新文献
Gas–liquid and liquid–liquid vortex technology for process intensification Graphitic carbon nitride/bismuth-based Z-scheme heterojunctions for the photocatalytic removal of pharmaceuticals and personal care products — a review Photocatalytic materials for solar-driven hydrogen generation Electrode engineering strategies to advance polymer electrolyte fuel cells — recent progress and opportunities Intensified reactors for a paradigm shift in chemical processing: the case for spinning disc reactors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1