为印度喜马拉雅山脉北阿坎德邦的适应规划进行气候变化脆弱性评估

IF 4.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY International journal of disaster risk reduction Pub Date : 2024-11-01 DOI:10.1016/j.ijdrr.2024.104938
Seema Rani, Purushottam Tiwari
{"title":"为印度喜马拉雅山脉北阿坎德邦的适应规划进行气候变化脆弱性评估","authors":"Seema Rani,&nbsp;Purushottam Tiwari","doi":"10.1016/j.ijdrr.2024.104938","DOIUrl":null,"url":null,"abstract":"<div><div>Climate change vulnerability estimation at all spatial scales is imperative for the development of effective adaptation strategies in the biogeographically fragile Himalayan region. This study aims to estimate district-wise climate change vulnerability in the state of Uttarakhand for the year 2022 by integrating climatic, environmental, and socio-economic factors. Employing an integrated approach, nine components (climate change, natural disaster, ecosystem services, agriculture, socio-economic status, human resource capacity, infrastructure, basic facilities, and social/natural capital) incorporating a total of 63 indicators, are used to estimate exposure (E), sensitivity (S), adaptive capacity (AC) and the vulnerability of the study area. Principal component analysis (PCA) is used to assess the suitability and weights of all the indicators. The findings show that middle (1400–2400 m a.s.l.) and higher (&gt;2400 m a.s.l.) districts of the state are more vulnerable (−0.68 to −1.50) than lower (1–1400 m a.s.l.) districts (0.16 to −0.26). Based on the vulnerability index (−0.68 to −1.50), five districts-Uttarkashi, Rudraprayag, Chamoli, Champawat, Pithoragarh, and Bageshwar are identified as priority districts for adaptation planning. The high vulnerability is primarily attributed to increased exposure to excessive precipitation, cold waves, cloudbursts, and flood events, coupled with high ecosystem sensitivity and low adaptive capacity. In contrast, the lower districts of the state benefit from better infrastructure, social and natural capital, and connectivity, which contribute to low vulnerability. The suggested strategies in the present study would help policymakers to allocate resources efficiently, fostering long-term resilience to climate change and sustainable development.</div></div>","PeriodicalId":13915,"journal":{"name":"International journal of disaster risk reduction","volume":"114 ","pages":"Article 104938"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Climate change vulnerability assessment for adaptation planning in Uttarakhand, Indian Himalaya\",\"authors\":\"Seema Rani,&nbsp;Purushottam Tiwari\",\"doi\":\"10.1016/j.ijdrr.2024.104938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Climate change vulnerability estimation at all spatial scales is imperative for the development of effective adaptation strategies in the biogeographically fragile Himalayan region. This study aims to estimate district-wise climate change vulnerability in the state of Uttarakhand for the year 2022 by integrating climatic, environmental, and socio-economic factors. Employing an integrated approach, nine components (climate change, natural disaster, ecosystem services, agriculture, socio-economic status, human resource capacity, infrastructure, basic facilities, and social/natural capital) incorporating a total of 63 indicators, are used to estimate exposure (E), sensitivity (S), adaptive capacity (AC) and the vulnerability of the study area. Principal component analysis (PCA) is used to assess the suitability and weights of all the indicators. The findings show that middle (1400–2400 m a.s.l.) and higher (&gt;2400 m a.s.l.) districts of the state are more vulnerable (−0.68 to −1.50) than lower (1–1400 m a.s.l.) districts (0.16 to −0.26). Based on the vulnerability index (−0.68 to −1.50), five districts-Uttarkashi, Rudraprayag, Chamoli, Champawat, Pithoragarh, and Bageshwar are identified as priority districts for adaptation planning. The high vulnerability is primarily attributed to increased exposure to excessive precipitation, cold waves, cloudbursts, and flood events, coupled with high ecosystem sensitivity and low adaptive capacity. In contrast, the lower districts of the state benefit from better infrastructure, social and natural capital, and connectivity, which contribute to low vulnerability. The suggested strategies in the present study would help policymakers to allocate resources efficiently, fostering long-term resilience to climate change and sustainable development.</div></div>\",\"PeriodicalId\":13915,\"journal\":{\"name\":\"International journal of disaster risk reduction\",\"volume\":\"114 \",\"pages\":\"Article 104938\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of disaster risk reduction\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212420924007003\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of disaster risk reduction","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212420924007003","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

要在生物地理脆弱的喜马拉雅地区制定有效的适应战略,就必须对所有空间尺度的气候变化脆弱性进行估算。本研究旨在通过整合气候、环境和社会经济因素,估算 2022 年北阿坎德邦各地区的气候变化脆弱性。本研究采用综合方法,利用九个组成部分(气候变化、自然灾害、生态系统服务、农业、社会经济状况、人力资源能力、基础设施、基本设施和社会/自然资本)共 63 个指标来估算研究地区的暴露程度 (E)、敏感程度 (S)、适应能力 (AC) 和脆弱性。主成分分析(PCA)用于评估所有指标的适宜性和权重。研究结果表明,该州中等(1400-2400 米海拔)和较高(2400 米海拔)地区的脆弱性指数(-0.68 至-1.50)高于较低(1-1400 米海拔)地区的脆弱性指数(0.16 至-0.26)。根据脆弱性指数(-0.68 至-1.50),五个地区--Uttarkashi、Rudraprayag、Chamoli、Champawat、Pithoragarh 和 Bageshwar 被确定为适应规划的优先地区。这些地区的高脆弱性主要归因于受过度降水、寒潮、云雾骤降和洪水事件影响的程度增加,以及生态系统的高敏感性和低适应能力。相比之下,该州较低的地区受益于较好的基础设施、社会和自然资本以及连通性,这有助于降低脆弱性。本研究中建议的战略将有助于决策者有效地分配资源,促进对气候变化的长期适应能力和可持续发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Climate change vulnerability assessment for adaptation planning in Uttarakhand, Indian Himalaya
Climate change vulnerability estimation at all spatial scales is imperative for the development of effective adaptation strategies in the biogeographically fragile Himalayan region. This study aims to estimate district-wise climate change vulnerability in the state of Uttarakhand for the year 2022 by integrating climatic, environmental, and socio-economic factors. Employing an integrated approach, nine components (climate change, natural disaster, ecosystem services, agriculture, socio-economic status, human resource capacity, infrastructure, basic facilities, and social/natural capital) incorporating a total of 63 indicators, are used to estimate exposure (E), sensitivity (S), adaptive capacity (AC) and the vulnerability of the study area. Principal component analysis (PCA) is used to assess the suitability and weights of all the indicators. The findings show that middle (1400–2400 m a.s.l.) and higher (>2400 m a.s.l.) districts of the state are more vulnerable (−0.68 to −1.50) than lower (1–1400 m a.s.l.) districts (0.16 to −0.26). Based on the vulnerability index (−0.68 to −1.50), five districts-Uttarkashi, Rudraprayag, Chamoli, Champawat, Pithoragarh, and Bageshwar are identified as priority districts for adaptation planning. The high vulnerability is primarily attributed to increased exposure to excessive precipitation, cold waves, cloudbursts, and flood events, coupled with high ecosystem sensitivity and low adaptive capacity. In contrast, the lower districts of the state benefit from better infrastructure, social and natural capital, and connectivity, which contribute to low vulnerability. The suggested strategies in the present study would help policymakers to allocate resources efficiently, fostering long-term resilience to climate change and sustainable development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of disaster risk reduction
International journal of disaster risk reduction GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
8.70
自引率
18.00%
发文量
688
审稿时长
79 days
期刊介绍: The International Journal of Disaster Risk Reduction (IJDRR) is the journal for researchers, policymakers and practitioners across diverse disciplines: earth sciences and their implications; environmental sciences; engineering; urban studies; geography; and the social sciences. IJDRR publishes fundamental and applied research, critical reviews, policy papers and case studies with a particular focus on multi-disciplinary research that aims to reduce the impact of natural, technological, social and intentional disasters. IJDRR stimulates exchange of ideas and knowledge transfer on disaster research, mitigation, adaptation, prevention and risk reduction at all geographical scales: local, national and international. Key topics:- -multifaceted disaster and cascading disasters -the development of disaster risk reduction strategies and techniques -discussion and development of effective warning and educational systems for risk management at all levels -disasters associated with climate change -vulnerability analysis and vulnerability trends -emerging risks -resilience against disasters. The journal particularly encourages papers that approach risk from a multi-disciplinary perspective.
期刊最新文献
Simulating and visualising indoor seismic damage: A systematic literature review Searching for emergency shelters in rural China: A systematic review of policies and literature Before and after disaster: Homeowner protective actions in a changing climate Assessing the vulnerability of Cape Coral, Florida, to sea level rise using principal component analysis (2020–2050) Risk assessment of flash flood under climate and land use and land cover change in Tianshan Mountains, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1