基于到达角的室内定位算法与基准比较

IF 4.4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Ad Hoc Networks Pub Date : 2024-10-25 DOI:10.1016/j.adhoc.2024.103691
Francesco Furfari, Michele Girolami, Fabio Mavilia, Paolo Barsocchi
{"title":"基于到达角的室内定位算法与基准比较","authors":"Francesco Furfari,&nbsp;Michele Girolami,&nbsp;Fabio Mavilia,&nbsp;Paolo Barsocchi","doi":"10.1016/j.adhoc.2024.103691","DOIUrl":null,"url":null,"abstract":"<div><div>Indoor localization is crucial for developing intelligent environments capable of understanding user contexts and adapting to environmental changes. Bluetooth 5.1 Direction Finding is a recent specification that leverages the angle of departure (AoD) and angle of arrival (AoA) of radio signals to locate objects or people indoors. This paper presents a set of algorithms that estimate user positions using AoA values and the concept of the Confidence Region (CR), which defines the expected position uncertainty and helps to remove outlier measurements, thereby improving performance compared to traditional triangulation algorithms. We validate the algorithms with a publicly available dataset, and analyze the impact of body orientation relative to receiving units. The experimental results highlight the limitations and potential of the proposed solutions. From our experiments, we observe that the Conditional All-in algorithm presented in this work, achieves the best performance across all configuration settings in both line-of-sight and non-line-of-sight conditions.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indoor localization algorithms based on Angle of Arrival with a benchmark comparison\",\"authors\":\"Francesco Furfari,&nbsp;Michele Girolami,&nbsp;Fabio Mavilia,&nbsp;Paolo Barsocchi\",\"doi\":\"10.1016/j.adhoc.2024.103691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Indoor localization is crucial for developing intelligent environments capable of understanding user contexts and adapting to environmental changes. Bluetooth 5.1 Direction Finding is a recent specification that leverages the angle of departure (AoD) and angle of arrival (AoA) of radio signals to locate objects or people indoors. This paper presents a set of algorithms that estimate user positions using AoA values and the concept of the Confidence Region (CR), which defines the expected position uncertainty and helps to remove outlier measurements, thereby improving performance compared to traditional triangulation algorithms. We validate the algorithms with a publicly available dataset, and analyze the impact of body orientation relative to receiving units. The experimental results highlight the limitations and potential of the proposed solutions. From our experiments, we observe that the Conditional All-in algorithm presented in this work, achieves the best performance across all configuration settings in both line-of-sight and non-line-of-sight conditions.</div></div>\",\"PeriodicalId\":55555,\"journal\":{\"name\":\"Ad Hoc Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570870524003020\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524003020","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

室内定位对于开发能够理解用户背景并适应环境变化的智能环境至关重要。蓝牙 5.1 测向技术是最近推出的一种技术规范,它利用无线电信号的离去角(AoD)和到达角(AoA)来定位室内的物体或人员。本文介绍了一套利用 AoA 值和置信区域 (CR) 概念估算用户位置的算法,CR 定义了预期位置的不确定性,有助于去除离群测量值,从而与传统三角测量算法相比提高性能。我们利用一个公开的数据集对算法进行了验证,并分析了相对于接收单元的身体方位的影响。实验结果凸显了所提解决方案的局限性和潜力。我们从实验中发现,在视距和非视距条件下,本研究提出的条件全进算法在所有配置设置中都达到了最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Indoor localization algorithms based on Angle of Arrival with a benchmark comparison
Indoor localization is crucial for developing intelligent environments capable of understanding user contexts and adapting to environmental changes. Bluetooth 5.1 Direction Finding is a recent specification that leverages the angle of departure (AoD) and angle of arrival (AoA) of radio signals to locate objects or people indoors. This paper presents a set of algorithms that estimate user positions using AoA values and the concept of the Confidence Region (CR), which defines the expected position uncertainty and helps to remove outlier measurements, thereby improving performance compared to traditional triangulation algorithms. We validate the algorithms with a publicly available dataset, and analyze the impact of body orientation relative to receiving units. The experimental results highlight the limitations and potential of the proposed solutions. From our experiments, we observe that the Conditional All-in algorithm presented in this work, achieves the best performance across all configuration settings in both line-of-sight and non-line-of-sight conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ad Hoc Networks
Ad Hoc Networks 工程技术-电信学
CiteScore
10.20
自引率
4.20%
发文量
131
审稿时长
4.8 months
期刊介绍: The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to: Mobile and Wireless Ad Hoc Networks Sensor Networks Wireless Local and Personal Area Networks Home Networks Ad Hoc Networks of Autonomous Intelligent Systems Novel Architectures for Ad Hoc and Sensor Networks Self-organizing Network Architectures and Protocols Transport Layer Protocols Routing protocols (unicast, multicast, geocast, etc.) Media Access Control Techniques Error Control Schemes Power-Aware, Low-Power and Energy-Efficient Designs Synchronization and Scheduling Issues Mobility Management Mobility-Tolerant Communication Protocols Location Tracking and Location-based Services Resource and Information Management Security and Fault-Tolerance Issues Hardware and Software Platforms, Systems, and Testbeds Experimental and Prototype Results Quality-of-Service Issues Cross-Layer Interactions Scalability Issues Performance Analysis and Simulation of Protocols.
期刊最新文献
Transitive reasoning: A high-performance computing model for significant pattern discovery in cognitive IoT sensor network Deep learning with synthetic data for wireless NLOS positioning with a single base station ADRP-DQL: An adaptive distributed routing protocol for underwater acoustic sensor networks using deep Q-learning A context-aware zero trust-based hybrid approach to IoT-based self-driving vehicles security BLE-based sensors for privacy-enabled contagious disease monitoring with zero trust architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1