通过水热法获得包含超薄均匀硒化锑缓冲层的界面增强型硒化锗太阳能电池

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2024-10-31 DOI:10.1016/j.solmat.2024.113260
Jing Zhou , Shengwen Yang , Li Gao , Zhenming Qu , Yu Cao , Xiaoming Yu , Xuan Yu , Jian Ni , Jianjun Zhang
{"title":"通过水热法获得包含超薄均匀硒化锑缓冲层的界面增强型硒化锗太阳能电池","authors":"Jing Zhou ,&nbsp;Shengwen Yang ,&nbsp;Li Gao ,&nbsp;Zhenming Qu ,&nbsp;Yu Cao ,&nbsp;Xiaoming Yu ,&nbsp;Xuan Yu ,&nbsp;Jian Ni ,&nbsp;Jianjun Zhang","doi":"10.1016/j.solmat.2024.113260","DOIUrl":null,"url":null,"abstract":"<div><div>Germanium selenide (GeSe) is a promising thin film photovoltaic absorber material owing to its excellent optoelectronic properties, high stability, and low toxicity. Interface engineering by introducing an ultrathin antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>) buffer layer between the CdS electron transport layer and GeSe absorber layer is an effective technique for enhancing solar cell performance. However, the key to this technique is the fabrication of a uniform and smooth Sb<sub>2</sub>Se<sub>3</sub> buffer layer with minimal thickness. In this study, instead of the conventional closed-space sublimation method, a hydrothermal method was employed to slowly grow an Sb<sub>2</sub>Se<sub>3</sub> buffer layer with a thickness of approximately 8 nm. The Se/Na<sub>2</sub>SO<sub>3</sub> molar ratio in the selenium source during the hydrothermal synthesis was adjusted; a molar ratio of 1:2 led to an uneven Sb<sub>2</sub>Se<sub>3</sub> buffer layer thickness, whereas a molar ratio of 1:10 resulted in the formation of Sb<sub>2</sub>O<sub>3</sub> particles on the buffer layer surface. When the Se/Na<sub>2</sub>SO<sub>3</sub> molar ratio was 1:6, a smooth, uniform, dense, and impurity-free Sb<sub>2</sub>Se<sub>3</sub> buffer layer was obtained, achieving the highest efficiency of 3.33 % in a GeSe solar cell. Moreover, GeSe solar cells with hydrothermally grown Sb<sub>2</sub>Se<sub>3</sub> buffer layers demonstrated superior device interface properties and efficiency comparable with those using Sb<sub>2</sub>Se<sub>3</sub> buffer layers deposited via closed-space sublimation. This technique offers an effective method for steadily improving the performance of GeSe solar cells.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"279 ","pages":"Article 113260"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface-enhanced germanium selenide solar cells comprising an ultrathin and uniform antimony selenide buffer layer via hydrothermal approach\",\"authors\":\"Jing Zhou ,&nbsp;Shengwen Yang ,&nbsp;Li Gao ,&nbsp;Zhenming Qu ,&nbsp;Yu Cao ,&nbsp;Xiaoming Yu ,&nbsp;Xuan Yu ,&nbsp;Jian Ni ,&nbsp;Jianjun Zhang\",\"doi\":\"10.1016/j.solmat.2024.113260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Germanium selenide (GeSe) is a promising thin film photovoltaic absorber material owing to its excellent optoelectronic properties, high stability, and low toxicity. Interface engineering by introducing an ultrathin antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>) buffer layer between the CdS electron transport layer and GeSe absorber layer is an effective technique for enhancing solar cell performance. However, the key to this technique is the fabrication of a uniform and smooth Sb<sub>2</sub>Se<sub>3</sub> buffer layer with minimal thickness. In this study, instead of the conventional closed-space sublimation method, a hydrothermal method was employed to slowly grow an Sb<sub>2</sub>Se<sub>3</sub> buffer layer with a thickness of approximately 8 nm. The Se/Na<sub>2</sub>SO<sub>3</sub> molar ratio in the selenium source during the hydrothermal synthesis was adjusted; a molar ratio of 1:2 led to an uneven Sb<sub>2</sub>Se<sub>3</sub> buffer layer thickness, whereas a molar ratio of 1:10 resulted in the formation of Sb<sub>2</sub>O<sub>3</sub> particles on the buffer layer surface. When the Se/Na<sub>2</sub>SO<sub>3</sub> molar ratio was 1:6, a smooth, uniform, dense, and impurity-free Sb<sub>2</sub>Se<sub>3</sub> buffer layer was obtained, achieving the highest efficiency of 3.33 % in a GeSe solar cell. Moreover, GeSe solar cells with hydrothermally grown Sb<sub>2</sub>Se<sub>3</sub> buffer layers demonstrated superior device interface properties and efficiency comparable with those using Sb<sub>2</sub>Se<sub>3</sub> buffer layers deposited via closed-space sublimation. This technique offers an effective method for steadily improving the performance of GeSe solar cells.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"279 \",\"pages\":\"Article 113260\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024824005725\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005725","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

硒化锗(GeSe)具有优异的光电特性、高稳定性和低毒性,是一种前景广阔的薄膜光伏吸收材料。在硒化镉电子传输层和硒化锗吸收层之间引入超薄硒化锑(Sb2Se3)缓冲层的界面工程是提高太阳能电池性能的有效技术。然而,该技术的关键在于制造厚度最小、均匀光滑的 Sb2Se3 缓冲层。在本研究中,我们没有采用传统的封闭空间升华法,而是采用水热法缓慢生长出厚度约为 8 纳米的 Sb2Se3 缓冲层。在水热合成过程中,可以调整硒源中的 Se/Na2SO3 摩尔比;摩尔比为 1:2 时,Sb2Se3 缓冲层厚度不均匀,而摩尔比为 1:10 时,缓冲层表面会形成 Sb2O3 颗粒。当 Se/Na2SO3 摩尔比为 1:6 时,获得了光滑、均匀、致密且无杂质的 Sb2Se3 缓冲层,在 GeSe 太阳能电池中实现了 3.33% 的最高效率。此外,使用水热法生长的 Sb2Se3 缓冲层的 GeSe 太阳能电池显示出卓越的器件界面特性,其效率可与使用闭空间升华法沉积的 Sb2Se3 缓冲层的太阳能电池相媲美。该技术为稳步提高 GeSe 太阳能电池的性能提供了一种有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interface-enhanced germanium selenide solar cells comprising an ultrathin and uniform antimony selenide buffer layer via hydrothermal approach
Germanium selenide (GeSe) is a promising thin film photovoltaic absorber material owing to its excellent optoelectronic properties, high stability, and low toxicity. Interface engineering by introducing an ultrathin antimony selenide (Sb2Se3) buffer layer between the CdS electron transport layer and GeSe absorber layer is an effective technique for enhancing solar cell performance. However, the key to this technique is the fabrication of a uniform and smooth Sb2Se3 buffer layer with minimal thickness. In this study, instead of the conventional closed-space sublimation method, a hydrothermal method was employed to slowly grow an Sb2Se3 buffer layer with a thickness of approximately 8 nm. The Se/Na2SO3 molar ratio in the selenium source during the hydrothermal synthesis was adjusted; a molar ratio of 1:2 led to an uneven Sb2Se3 buffer layer thickness, whereas a molar ratio of 1:10 resulted in the formation of Sb2O3 particles on the buffer layer surface. When the Se/Na2SO3 molar ratio was 1:6, a smooth, uniform, dense, and impurity-free Sb2Se3 buffer layer was obtained, achieving the highest efficiency of 3.33 % in a GeSe solar cell. Moreover, GeSe solar cells with hydrothermally grown Sb2Se3 buffer layers demonstrated superior device interface properties and efficiency comparable with those using Sb2Se3 buffer layers deposited via closed-space sublimation. This technique offers an effective method for steadily improving the performance of GeSe solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Oxide-nitride nanolayer stacks for enhanced passivation of p-type surfaces in silicon solar cells Accurately quantifying the recombination pathways unique in back contact solar cells Analyzing the effectiveness of various coatings to mitigate photovoltaic modules soiling in desert climate Solar energy harvester based on polarization insensitive and wide angle stable UWB absorber for UV, visible and IR frequency range Experimental evaluation of photovoltaic thermal (PVT) system using a modular heat collector with flat back shape fins, pipe, nanofluids and phase change material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1