{"title":"集成差分馈电贴片和发射阵列的微波/毫米波三频共用孔径天线","authors":"Zi Long Ma, Yang Li Geng, Zhi Han Zhou","doi":"10.1016/j.aeue.2024.155563","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a microwave (MW)/millimeter-wave (MMW) triple-band shared-aperture antenna. It is implemented by integrating a differentially-fed patch (3.6 GHz) and a dual-band transmitarray (TA) (26 GHz and 39 GHz) through structure reuse. To realize an efficient integration, the patch antenna is evolved from a single-layer structure to a multi-layer one, with an extended ring-shaped patch added in each layer to obtain a proper transmitting surface (TS) size. For the TA, it adopts a unit cell (UC) consisting of two interleaved slots. By adjusting the lengths of the slots, independent dynamic phase shifts covering 360<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span> can be attained for the 26 GHz and 39 GHz bands, respectively. To achieve an appropriate focal-to-diameter ratio (F/D) for the TA, a frequency selective surface (FSS) is employed to replace the ground plane of the patch antenna. Thanks to the spatial feeding architecture of the TA, the proposed antenna eliminates the need of complicated feeding network and features low feeding loss and high gain in the MMW bands. To validate the design idea, a prototype is fabricated and measured. The experimental results demonstrate that the proposed antenna can successfully operate in the three bands with peak gain of 7.6 dBi, 19.3 dBi and 19.5 dBi, respectively. In the 26 GHz and 39 GHz bands, beam scanning ranges of <span><math><mrow><mo>±</mo><mn>2</mn><msup><mrow><mn>5</mn></mrow><mrow><mo>∘</mo></mrow></msup></mrow></math></span> and <span><math><mrow><mo>±</mo><mn>1</mn><msup><mrow><mn>3</mn></mrow><mrow><mo>∘</mo></mrow></msup></mrow></math></span> can be obtained, respectively. The proposed antenna can be a promising candidate for 5G multi-band applications.</div></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"187 ","pages":"Article 155563"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A microwave/millimeter-wave triple-band shared-aperture antenna integrating differentially-fed patch and transmitarray\",\"authors\":\"Zi Long Ma, Yang Li Geng, Zhi Han Zhou\",\"doi\":\"10.1016/j.aeue.2024.155563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a microwave (MW)/millimeter-wave (MMW) triple-band shared-aperture antenna. It is implemented by integrating a differentially-fed patch (3.6 GHz) and a dual-band transmitarray (TA) (26 GHz and 39 GHz) through structure reuse. To realize an efficient integration, the patch antenna is evolved from a single-layer structure to a multi-layer one, with an extended ring-shaped patch added in each layer to obtain a proper transmitting surface (TS) size. For the TA, it adopts a unit cell (UC) consisting of two interleaved slots. By adjusting the lengths of the slots, independent dynamic phase shifts covering 360<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span> can be attained for the 26 GHz and 39 GHz bands, respectively. To achieve an appropriate focal-to-diameter ratio (F/D) for the TA, a frequency selective surface (FSS) is employed to replace the ground plane of the patch antenna. Thanks to the spatial feeding architecture of the TA, the proposed antenna eliminates the need of complicated feeding network and features low feeding loss and high gain in the MMW bands. To validate the design idea, a prototype is fabricated and measured. The experimental results demonstrate that the proposed antenna can successfully operate in the three bands with peak gain of 7.6 dBi, 19.3 dBi and 19.5 dBi, respectively. In the 26 GHz and 39 GHz bands, beam scanning ranges of <span><math><mrow><mo>±</mo><mn>2</mn><msup><mrow><mn>5</mn></mrow><mrow><mo>∘</mo></mrow></msup></mrow></math></span> and <span><math><mrow><mo>±</mo><mn>1</mn><msup><mrow><mn>3</mn></mrow><mrow><mo>∘</mo></mrow></msup></mrow></math></span> can be obtained, respectively. The proposed antenna can be a promising candidate for 5G multi-band applications.</div></div>\",\"PeriodicalId\":50844,\"journal\":{\"name\":\"Aeu-International Journal of Electronics and Communications\",\"volume\":\"187 \",\"pages\":\"Article 155563\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aeu-International Journal of Electronics and Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1434841124004497\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841124004497","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A microwave/millimeter-wave triple-band shared-aperture antenna integrating differentially-fed patch and transmitarray
This paper presents a microwave (MW)/millimeter-wave (MMW) triple-band shared-aperture antenna. It is implemented by integrating a differentially-fed patch (3.6 GHz) and a dual-band transmitarray (TA) (26 GHz and 39 GHz) through structure reuse. To realize an efficient integration, the patch antenna is evolved from a single-layer structure to a multi-layer one, with an extended ring-shaped patch added in each layer to obtain a proper transmitting surface (TS) size. For the TA, it adopts a unit cell (UC) consisting of two interleaved slots. By adjusting the lengths of the slots, independent dynamic phase shifts covering 360 can be attained for the 26 GHz and 39 GHz bands, respectively. To achieve an appropriate focal-to-diameter ratio (F/D) for the TA, a frequency selective surface (FSS) is employed to replace the ground plane of the patch antenna. Thanks to the spatial feeding architecture of the TA, the proposed antenna eliminates the need of complicated feeding network and features low feeding loss and high gain in the MMW bands. To validate the design idea, a prototype is fabricated and measured. The experimental results demonstrate that the proposed antenna can successfully operate in the three bands with peak gain of 7.6 dBi, 19.3 dBi and 19.5 dBi, respectively. In the 26 GHz and 39 GHz bands, beam scanning ranges of and can be obtained, respectively. The proposed antenna can be a promising candidate for 5G multi-band applications.
期刊介绍:
AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including:
signal and system theory, digital signal processing
network theory and circuit design
information theory, communication theory and techniques, modulation, source and channel coding
switching theory and techniques, communication protocols
optical communications
microwave theory and techniques, radar, sonar
antennas, wave propagation
AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.