{"title":"在复杂网络中识别有影响力节点的神经扩散模型","authors":"Waseem Ahmad, Bang Wang","doi":"10.1016/j.chaos.2024.115682","DOIUrl":null,"url":null,"abstract":"<div><div>Identifying influential nodes in complex networks through influence diffusion models is a challenging problem that has garnered significant attention in recent years. While many heuristic algorithms have been developed to address this issue, neural models that account for weighted influence remain underexplored. In this paper, we introduce a neural diffusion model (NDM) designed to identify weighted influential nodes in complex networks. Our NDM is trained on small-scale networks and learns to map network structures to the corresponding weighted influence of nodes, leveraging the weighted independent cascade model to provide insights into network dynamics. Specifically, we extract weight-based features from nodes at various scales to capture their local structures. We then employ a neural encoder to incorporate neighborhood information and learn node embeddings by integrating features across different scales into sequential neural units. Finally, a decoding mechanism transforms these node embeddings into estimates of weighted influence. Experimental results on both real-world and synthetic networks demonstrate that our NDM outperforms state-of-the-art techniques, achieving superior prediction performance.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A neural diffusion model for identifying influential nodes in complex networks\",\"authors\":\"Waseem Ahmad, Bang Wang\",\"doi\":\"10.1016/j.chaos.2024.115682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Identifying influential nodes in complex networks through influence diffusion models is a challenging problem that has garnered significant attention in recent years. While many heuristic algorithms have been developed to address this issue, neural models that account for weighted influence remain underexplored. In this paper, we introduce a neural diffusion model (NDM) designed to identify weighted influential nodes in complex networks. Our NDM is trained on small-scale networks and learns to map network structures to the corresponding weighted influence of nodes, leveraging the weighted independent cascade model to provide insights into network dynamics. Specifically, we extract weight-based features from nodes at various scales to capture their local structures. We then employ a neural encoder to incorporate neighborhood information and learn node embeddings by integrating features across different scales into sequential neural units. Finally, a decoding mechanism transforms these node embeddings into estimates of weighted influence. Experimental results on both real-world and synthetic networks demonstrate that our NDM outperforms state-of-the-art techniques, achieving superior prediction performance.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924012347\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012347","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A neural diffusion model for identifying influential nodes in complex networks
Identifying influential nodes in complex networks through influence diffusion models is a challenging problem that has garnered significant attention in recent years. While many heuristic algorithms have been developed to address this issue, neural models that account for weighted influence remain underexplored. In this paper, we introduce a neural diffusion model (NDM) designed to identify weighted influential nodes in complex networks. Our NDM is trained on small-scale networks and learns to map network structures to the corresponding weighted influence of nodes, leveraging the weighted independent cascade model to provide insights into network dynamics. Specifically, we extract weight-based features from nodes at various scales to capture their local structures. We then employ a neural encoder to incorporate neighborhood information and learn node embeddings by integrating features across different scales into sequential neural units. Finally, a decoding mechanism transforms these node embeddings into estimates of weighted influence. Experimental results on both real-world and synthetic networks demonstrate that our NDM outperforms state-of-the-art techniques, achieving superior prediction performance.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.