在复杂网络中识别有影响力节点的神经扩散模型

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Chaos Solitons & Fractals Pub Date : 2024-10-30 DOI:10.1016/j.chaos.2024.115682
Waseem Ahmad, Bang Wang
{"title":"在复杂网络中识别有影响力节点的神经扩散模型","authors":"Waseem Ahmad,&nbsp;Bang Wang","doi":"10.1016/j.chaos.2024.115682","DOIUrl":null,"url":null,"abstract":"<div><div>Identifying influential nodes in complex networks through influence diffusion models is a challenging problem that has garnered significant attention in recent years. While many heuristic algorithms have been developed to address this issue, neural models that account for weighted influence remain underexplored. In this paper, we introduce a neural diffusion model (NDM) designed to identify weighted influential nodes in complex networks. Our NDM is trained on small-scale networks and learns to map network structures to the corresponding weighted influence of nodes, leveraging the weighted independent cascade model to provide insights into network dynamics. Specifically, we extract weight-based features from nodes at various scales to capture their local structures. We then employ a neural encoder to incorporate neighborhood information and learn node embeddings by integrating features across different scales into sequential neural units. Finally, a decoding mechanism transforms these node embeddings into estimates of weighted influence. Experimental results on both real-world and synthetic networks demonstrate that our NDM outperforms state-of-the-art techniques, achieving superior prediction performance.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A neural diffusion model for identifying influential nodes in complex networks\",\"authors\":\"Waseem Ahmad,&nbsp;Bang Wang\",\"doi\":\"10.1016/j.chaos.2024.115682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Identifying influential nodes in complex networks through influence diffusion models is a challenging problem that has garnered significant attention in recent years. While many heuristic algorithms have been developed to address this issue, neural models that account for weighted influence remain underexplored. In this paper, we introduce a neural diffusion model (NDM) designed to identify weighted influential nodes in complex networks. Our NDM is trained on small-scale networks and learns to map network structures to the corresponding weighted influence of nodes, leveraging the weighted independent cascade model to provide insights into network dynamics. Specifically, we extract weight-based features from nodes at various scales to capture their local structures. We then employ a neural encoder to incorporate neighborhood information and learn node embeddings by integrating features across different scales into sequential neural units. Finally, a decoding mechanism transforms these node embeddings into estimates of weighted influence. Experimental results on both real-world and synthetic networks demonstrate that our NDM outperforms state-of-the-art techniques, achieving superior prediction performance.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924012347\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012347","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

通过影响力扩散模型识别复杂网络中具有影响力的节点是一个具有挑战性的问题,近年来已引起了广泛关注。虽然已经开发了许多启发式算法来解决这一问题,但考虑加权影响力的神经模型仍未得到充分探索。在本文中,我们介绍了一种神经扩散模型(NDM),旨在识别复杂网络中的加权影响力节点。我们的神经扩散模型在小规模网络上进行训练,学会将网络结构映射到节点的相应加权影响力上,利用加权独立级联模型深入了解网络动态。具体来说,我们从不同尺度的节点中提取基于权重的特征,以捕捉其局部结构。然后,我们采用神经编码器来整合邻域信息,并通过将不同尺度的特征整合到连续神经单元中来学习节点嵌入。最后,解码机制将这些节点嵌入转化为加权影响估计值。在真实世界和合成网络上的实验结果表明,我们的 NDM 优于最先进的技术,实现了卓越的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A neural diffusion model for identifying influential nodes in complex networks
Identifying influential nodes in complex networks through influence diffusion models is a challenging problem that has garnered significant attention in recent years. While many heuristic algorithms have been developed to address this issue, neural models that account for weighted influence remain underexplored. In this paper, we introduce a neural diffusion model (NDM) designed to identify weighted influential nodes in complex networks. Our NDM is trained on small-scale networks and learns to map network structures to the corresponding weighted influence of nodes, leveraging the weighted independent cascade model to provide insights into network dynamics. Specifically, we extract weight-based features from nodes at various scales to capture their local structures. We then employ a neural encoder to incorporate neighborhood information and learn node embeddings by integrating features across different scales into sequential neural units. Finally, a decoding mechanism transforms these node embeddings into estimates of weighted influence. Experimental results on both real-world and synthetic networks demonstrate that our NDM outperforms state-of-the-art techniques, achieving superior prediction performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
期刊最新文献
Emergence of relaxation beat-waves in genuinely nonlinear Klein-Gordon chain with bi-harmonic parametric excitation A special memristive diode-bridge-based hyperchaotic hyperjerk autonomous circuit with three positive Lyapunov exponents Impulsive quasi-containment control in stochastic heterogeneous multiplex networks A novel spatio-temporal prediction model of epidemic spread integrating cellular automata with agent-based modeling Prescribed-time multi-coalition Nash equilibrium seeking by event-triggered communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1