Yong He , Hongshan Yu , Xiaoyan Liu , Zhengeng Yang , Wei Sun , Saeed Anwar , Ajmal Mian
{"title":"计算机视觉中基于深度学习的 3D 分割:调查","authors":"Yong He , Hongshan Yu , Xiaoyan Liu , Zhengeng Yang , Wei Sun , Saeed Anwar , Ajmal Mian","doi":"10.1016/j.inffus.2024.102722","DOIUrl":null,"url":null,"abstract":"<div><div>3D segmentation is a fundamental and challenging problem in computer vision with applications in autonomous driving and robotics. It has received significant attention from the computer vision, graphics and machine learning communities. Conventional methods for 3D segmentation, based on hand-crafted features and machine learning classifiers, lack generalization ability. Driven by their success in 2D computer vision, deep learning techniques have recently become the tool of choice for 3D segmentation tasks. This has led to an influx of many methods in the literature that have been evaluated on different benchmark datasets. Whereas survey papers on RGB-D and point cloud segmentation exist, there is a lack of a recent in-depth survey that covers all 3D data modalities and application domains. This paper fills the gap and comprehensively surveys the recent progress in deep learning-based 3D segmentation techniques. We cover over 230 works from the last six years, analyze their strengths and limitations, and discuss their competitive results on benchmark datasets. The survey provides a summary of the most commonly used pipelines and finally highlights promising research directions for the future.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"115 ","pages":"Article 102722"},"PeriodicalIF":14.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning based 3D segmentation in computer vision: A survey\",\"authors\":\"Yong He , Hongshan Yu , Xiaoyan Liu , Zhengeng Yang , Wei Sun , Saeed Anwar , Ajmal Mian\",\"doi\":\"10.1016/j.inffus.2024.102722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>3D segmentation is a fundamental and challenging problem in computer vision with applications in autonomous driving and robotics. It has received significant attention from the computer vision, graphics and machine learning communities. Conventional methods for 3D segmentation, based on hand-crafted features and machine learning classifiers, lack generalization ability. Driven by their success in 2D computer vision, deep learning techniques have recently become the tool of choice for 3D segmentation tasks. This has led to an influx of many methods in the literature that have been evaluated on different benchmark datasets. Whereas survey papers on RGB-D and point cloud segmentation exist, there is a lack of a recent in-depth survey that covers all 3D data modalities and application domains. This paper fills the gap and comprehensively surveys the recent progress in deep learning-based 3D segmentation techniques. We cover over 230 works from the last six years, analyze their strengths and limitations, and discuss their competitive results on benchmark datasets. The survey provides a summary of the most commonly used pipelines and finally highlights promising research directions for the future.</div></div>\",\"PeriodicalId\":50367,\"journal\":{\"name\":\"Information Fusion\",\"volume\":\"115 \",\"pages\":\"Article 102722\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Fusion\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566253524005001\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253524005001","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Deep learning based 3D segmentation in computer vision: A survey
3D segmentation is a fundamental and challenging problem in computer vision with applications in autonomous driving and robotics. It has received significant attention from the computer vision, graphics and machine learning communities. Conventional methods for 3D segmentation, based on hand-crafted features and machine learning classifiers, lack generalization ability. Driven by their success in 2D computer vision, deep learning techniques have recently become the tool of choice for 3D segmentation tasks. This has led to an influx of many methods in the literature that have been evaluated on different benchmark datasets. Whereas survey papers on RGB-D and point cloud segmentation exist, there is a lack of a recent in-depth survey that covers all 3D data modalities and application domains. This paper fills the gap and comprehensively surveys the recent progress in deep learning-based 3D segmentation techniques. We cover over 230 works from the last six years, analyze their strengths and limitations, and discuss their competitive results on benchmark datasets. The survey provides a summary of the most commonly used pipelines and finally highlights promising research directions for the future.
期刊介绍:
Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.