等离子体结合超声波降解水中的有机污染物:揭示自由基的产生和主要降解途径

IF 6.9 2区 环境科学与生态学 Q1 ENGINEERING, CHEMICAL Process Safety and Environmental Protection Pub Date : 2024-10-28 DOI:10.1016/j.psep.2024.10.095
He Guo, Shuang Yang, Jiaxin Wang, Wenxuan Jiang, Yawen Wang
{"title":"等离子体结合超声波降解水中的有机污染物:揭示自由基的产生和主要降解途径","authors":"He Guo,&nbsp;Shuang Yang,&nbsp;Jiaxin Wang,&nbsp;Wenxuan Jiang,&nbsp;Yawen Wang","doi":"10.1016/j.psep.2024.10.095","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the synergistic effects of dielectric barrier discharge (DBD) plasma coupled with ultrasound (US) in the degradation of organic pollutants in water. The optimal degradation conditions were determined to be 100 W ultrasonic power, 190 V DBD plasma voltage, and neutral pH. The combination of DBD plasma and US significantly enhances the generation of reactive species (·OH, ·O<sub>2</sub><sup>-</sup>, and <sup>1</sup>O<sub>2</sub>), leading to a 97.3 % degradation efficiency of methyl orange (MO), which is 17.3 % higher than DBD plasma alone. Electron spin resonance (ESR) identified ·OH, ·O<sub>2</sub><sup>-</sup>, and <sup>1</sup>O<sub>2</sub> in DBD/US system, and radical scavengers were employed to elucidate their roles. The degradation process was assessed through changes in pH, conductivity, TOC and COD, with characterization and analysis via UV-Vis and LC-MS. By combining LC-MS with density functional theory (DFT) calculations, nine intermediates were identified and three degradation pathways dominated by free radicals were established. Additionally, the DBD/US system treated wastewater containing sulfamethoxazole (SMX), sulfadiazine (SDZ), tetracycline (TC), and ciprofloxacin (CIP), achieving degradation rates exceeding 80 %. These findings suggest that the DBD/US coupled system holds promising potential for treating organic pollutant wastewater.</div></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"192 ","pages":"Pages 793-802"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma coupled with ultrasonic for degradation of organic pollutants in water: Revealing the generation of free radicals and the dominant degradation pathways\",\"authors\":\"He Guo,&nbsp;Shuang Yang,&nbsp;Jiaxin Wang,&nbsp;Wenxuan Jiang,&nbsp;Yawen Wang\",\"doi\":\"10.1016/j.psep.2024.10.095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the synergistic effects of dielectric barrier discharge (DBD) plasma coupled with ultrasound (US) in the degradation of organic pollutants in water. The optimal degradation conditions were determined to be 100 W ultrasonic power, 190 V DBD plasma voltage, and neutral pH. The combination of DBD plasma and US significantly enhances the generation of reactive species (·OH, ·O<sub>2</sub><sup>-</sup>, and <sup>1</sup>O<sub>2</sub>), leading to a 97.3 % degradation efficiency of methyl orange (MO), which is 17.3 % higher than DBD plasma alone. Electron spin resonance (ESR) identified ·OH, ·O<sub>2</sub><sup>-</sup>, and <sup>1</sup>O<sub>2</sub> in DBD/US system, and radical scavengers were employed to elucidate their roles. The degradation process was assessed through changes in pH, conductivity, TOC and COD, with characterization and analysis via UV-Vis and LC-MS. By combining LC-MS with density functional theory (DFT) calculations, nine intermediates were identified and three degradation pathways dominated by free radicals were established. Additionally, the DBD/US system treated wastewater containing sulfamethoxazole (SMX), sulfadiazine (SDZ), tetracycline (TC), and ciprofloxacin (CIP), achieving degradation rates exceeding 80 %. These findings suggest that the DBD/US coupled system holds promising potential for treating organic pollutant wastewater.</div></div>\",\"PeriodicalId\":20743,\"journal\":{\"name\":\"Process Safety and Environmental Protection\",\"volume\":\"192 \",\"pages\":\"Pages 793-802\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Process Safety and Environmental Protection\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957582024013831\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582024013831","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了介质阻挡放电(DBD)等离子体与超声波(US)在降解水中有机污染物方面的协同效应。最佳降解条件确定为 100 W 超声波功率、190 V DBD 等离子体电压和中性 pH 值。DBD 等离子体与 US 的结合大大提高了活性物种(-OH、-O2- 和 1O2)的生成,使甲基橙(MO)的降解效率达到 97.3%,比单独使用 DBD 等离子体高出 17.3%。电子自旋共振(ESR)确定了 DBD/US 系统中的 -OH、-O2- 和 1O2,并使用自由基清除剂来阐明它们的作用。降解过程通过 pH 值、电导率、总有机碳和化学需氧量的变化进行评估,并通过紫外可见光和液相色谱-质谱进行表征和分析。通过将 LC-MS 与密度泛函理论(DFT)计算相结合,确定了九种中间产物,并建立了三种以自由基为主的降解途径。此外,DBD/US 系统还处理了含有磺胺甲噁唑(SMX)、磺胺嘧啶(SDZ)、四环素(TC)和环丙沙星(CIP)的废水,降解率超过 80%。这些研究结果表明,DBD/US 耦合系统具有处理有机污染物废水的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plasma coupled with ultrasonic for degradation of organic pollutants in water: Revealing the generation of free radicals and the dominant degradation pathways
This study explores the synergistic effects of dielectric barrier discharge (DBD) plasma coupled with ultrasound (US) in the degradation of organic pollutants in water. The optimal degradation conditions were determined to be 100 W ultrasonic power, 190 V DBD plasma voltage, and neutral pH. The combination of DBD plasma and US significantly enhances the generation of reactive species (·OH, ·O2-, and 1O2), leading to a 97.3 % degradation efficiency of methyl orange (MO), which is 17.3 % higher than DBD plasma alone. Electron spin resonance (ESR) identified ·OH, ·O2-, and 1O2 in DBD/US system, and radical scavengers were employed to elucidate their roles. The degradation process was assessed through changes in pH, conductivity, TOC and COD, with characterization and analysis via UV-Vis and LC-MS. By combining LC-MS with density functional theory (DFT) calculations, nine intermediates were identified and three degradation pathways dominated by free radicals were established. Additionally, the DBD/US system treated wastewater containing sulfamethoxazole (SMX), sulfadiazine (SDZ), tetracycline (TC), and ciprofloxacin (CIP), achieving degradation rates exceeding 80 %. These findings suggest that the DBD/US coupled system holds promising potential for treating organic pollutant wastewater.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Process Safety and Environmental Protection
Process Safety and Environmental Protection 环境科学-工程:化工
CiteScore
11.40
自引率
15.40%
发文量
929
审稿时长
8.0 months
期刊介绍: The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice. PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers. PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.
期刊最新文献
A benchmark of industrial polymerization process for thermal runaway process monitoring Influence of oxygen carrier on NOx and N2O emissions in biomass combustion within fluidized beds Decontamination of fish aquarium wastewater by ozonation catalyzed by multi-metal loaded activated carbons for sustainable aquaculture Effect of concentration gradients on the explosion characteristics of methane/air premixed gases Inhibitory performance and mechanism analysis of modified fly-ash inhibitor on the coal spontaneous combustion: A combined study of laboratory experiments and molecular dynamic simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1