利用有限宽度介质基底上的背衬导体的纳米光导定向耦合器

IF 2.2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Quantum Electronics Pub Date : 2024-10-23 DOI:10.1109/JQE.2024.3485503
Kola Thirupathaiah;Montasir Qasymeh
{"title":"利用有限宽度介质基底上的背衬导体的纳米光导定向耦合器","authors":"Kola Thirupathaiah;Montasir Qasymeh","doi":"10.1109/JQE.2024.3485503","DOIUrl":null,"url":null,"abstract":"A new nanoplasmonic directional coupler (DC) is proposed, utilizing a conductor-backed coplanar waveguide (CPW) with a finite width. Our design approach includes first establishing a theoretical transmission-line model for the coupler, and then utilizing the characteristic parameters of related coupled CPW structures for a comprehensive analysis. The provided analysis is conducted through full-wave analysis using a conformal mapping technique (CMT), implemented in CST Microwave Studio Suite CAD simulation software. This article primarily focuses on designing and analyzing the directional coupler using a backed conductor on the dielectric substrate with finite width, applying the transmission line (TL) theory method to achieve a coupling coefficient (\n<inline-formula> <tex-math>$C_{C}$ </tex-math></inline-formula>\n) of 3-dB. The proposed plasmonic coupler operates efficiently at optical frequencies in both the O- and L-bands. Simulations demonstrate that the coupling coefficient of the directional coupler is effectively modulated by varying the width of the backed conductor (\n<inline-formula> <tex-math>$w_{c}$ </tex-math></inline-formula>\n). Consequently, the proposed design surpasses the performance of traditional narrow-bandwidth couplers, offering significant benefits for applications in subwavelength wireless networks and high-density nanoscale photonic integrated circuits (PICs).","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 6","pages":"1-9"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Nanoplasmonic Directional Coupler Utilizing a Backed Conductor on Dielectric Substrate With Finite Width\",\"authors\":\"Kola Thirupathaiah;Montasir Qasymeh\",\"doi\":\"10.1109/JQE.2024.3485503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new nanoplasmonic directional coupler (DC) is proposed, utilizing a conductor-backed coplanar waveguide (CPW) with a finite width. Our design approach includes first establishing a theoretical transmission-line model for the coupler, and then utilizing the characteristic parameters of related coupled CPW structures for a comprehensive analysis. The provided analysis is conducted through full-wave analysis using a conformal mapping technique (CMT), implemented in CST Microwave Studio Suite CAD simulation software. This article primarily focuses on designing and analyzing the directional coupler using a backed conductor on the dielectric substrate with finite width, applying the transmission line (TL) theory method to achieve a coupling coefficient (\\n<inline-formula> <tex-math>$C_{C}$ </tex-math></inline-formula>\\n) of 3-dB. The proposed plasmonic coupler operates efficiently at optical frequencies in both the O- and L-bands. Simulations demonstrate that the coupling coefficient of the directional coupler is effectively modulated by varying the width of the backed conductor (\\n<inline-formula> <tex-math>$w_{c}$ </tex-math></inline-formula>\\n). Consequently, the proposed design surpasses the performance of traditional narrow-bandwidth couplers, offering significant benefits for applications in subwavelength wireless networks and high-density nanoscale photonic integrated circuits (PICs).\",\"PeriodicalId\":13200,\"journal\":{\"name\":\"IEEE Journal of Quantum Electronics\",\"volume\":\"60 6\",\"pages\":\"1-9\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10731953/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10731953/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新型纳米光子定向耦合器 (DC),它利用了宽度有限的导体支撑共面波导 (CPW)。我们的设计方法包括首先建立耦合器的理论传输线模型,然后利用相关耦合 CPW 结构的特征参数进行综合分析。所提供的分析是通过保形映射技术 (CMT) 进行的全波分析,该技术是在 CST Microwave Studio Suite CAD 仿真软件中实现的。本文主要侧重于设计和分析使用有限宽度介质基板上的背衬导体的定向耦合器,并应用传输线(TL)理论方法实现 3 分贝的耦合系数($C_{C}$)。所提出的等离子体耦合器可在 O 波段和 L 波段的光学频率下高效工作。仿真结果表明,通过改变背向导体的宽度($w_{c}$),可有效调节定向耦合器的耦合系数。因此,所提出的设计超越了传统窄带耦合器的性能,为亚波长无线网络和高密度纳米级光子集成电路(PIC)的应用提供了显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Nanoplasmonic Directional Coupler Utilizing a Backed Conductor on Dielectric Substrate With Finite Width
A new nanoplasmonic directional coupler (DC) is proposed, utilizing a conductor-backed coplanar waveguide (CPW) with a finite width. Our design approach includes first establishing a theoretical transmission-line model for the coupler, and then utilizing the characteristic parameters of related coupled CPW structures for a comprehensive analysis. The provided analysis is conducted through full-wave analysis using a conformal mapping technique (CMT), implemented in CST Microwave Studio Suite CAD simulation software. This article primarily focuses on designing and analyzing the directional coupler using a backed conductor on the dielectric substrate with finite width, applying the transmission line (TL) theory method to achieve a coupling coefficient ( $C_{C}$ ) of 3-dB. The proposed plasmonic coupler operates efficiently at optical frequencies in both the O- and L-bands. Simulations demonstrate that the coupling coefficient of the directional coupler is effectively modulated by varying the width of the backed conductor ( $w_{c}$ ). Consequently, the proposed design surpasses the performance of traditional narrow-bandwidth couplers, offering significant benefits for applications in subwavelength wireless networks and high-density nanoscale photonic integrated circuits (PICs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Quantum Electronics
IEEE Journal of Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.70
自引率
4.00%
发文量
99
审稿时长
3.0 months
期刊介绍: The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.
期刊最新文献
A Nanoplasmonic Directional Coupler Utilizing a Backed Conductor on Dielectric Substrate With Finite Width Intensity and Degree of Coherence of Vortex Beams in Atmospheric Turbulence Influences of Thermal Effect on the Performance of FMCW Signal Generated by Current-Modulated DFB-LDs Numerical Modeling for 250 nm DUV LEDs With Discrete p-type Functional Layers to Manage Both Carrier and Photon Transport C-Band Directly Modulated Lasers With Tunable Photon–Photon Resonance in InP Membrane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1