强化喷丸:减轻固溶退火 LPBF 316 l 不锈钢应力腐蚀开裂的可行解决方案

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Letters Pub Date : 2024-10-28 DOI:10.1016/j.matlet.2024.137626
Tejas Gundgire , Suvi Santa-aho , Timo Rautio , Minnamari Vippola
{"title":"强化喷丸:减轻固溶退火 LPBF 316 l 不锈钢应力腐蚀开裂的可行解决方案","authors":"Tejas Gundgire ,&nbsp;Suvi Santa-aho ,&nbsp;Timo Rautio ,&nbsp;Minnamari Vippola","doi":"10.1016/j.matlet.2024.137626","DOIUrl":null,"url":null,"abstract":"<div><div>Laser powder bed fusion (LPBF) effectively fabricates intricate 316L stainless steel components but often results in significant tensile residual stresses and anisotropic microstructures, compromising mechanical performance. Solution annealing at 1050–1100 °C reduces anisotropy along with mitigating these stresses but may reduce stress corrosion cracking resistance (SCC). Therefore, this study combined solution annealing with severe shot peening (SSP) to enhance the surface properties and the SCC performance. The results showed that SSP introduced compressive residual stresses exceeding −700 MPa on the surface and up to 300 µm in depth, significantly reducing tensile stresses. Additionally, SSP increased surface hardness and halved surface roughness, potentially enhancing stress corrosion cracking resistance and mechanical performance, establishing SSP as an effective post-processing technique for LPBF 316L components.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"378 ","pages":"Article 137626"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Severe shot peening: A promising solution for mitigating stress corrosion cracking in solution-annealed LPBF 316 l stainless steel\",\"authors\":\"Tejas Gundgire ,&nbsp;Suvi Santa-aho ,&nbsp;Timo Rautio ,&nbsp;Minnamari Vippola\",\"doi\":\"10.1016/j.matlet.2024.137626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Laser powder bed fusion (LPBF) effectively fabricates intricate 316L stainless steel components but often results in significant tensile residual stresses and anisotropic microstructures, compromising mechanical performance. Solution annealing at 1050–1100 °C reduces anisotropy along with mitigating these stresses but may reduce stress corrosion cracking resistance (SCC). Therefore, this study combined solution annealing with severe shot peening (SSP) to enhance the surface properties and the SCC performance. The results showed that SSP introduced compressive residual stresses exceeding −700 MPa on the surface and up to 300 µm in depth, significantly reducing tensile stresses. Additionally, SSP increased surface hardness and halved surface roughness, potentially enhancing stress corrosion cracking resistance and mechanical performance, establishing SSP as an effective post-processing technique for LPBF 316L components.</div></div>\",\"PeriodicalId\":384,\"journal\":{\"name\":\"Materials Letters\",\"volume\":\"378 \",\"pages\":\"Article 137626\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167577X2401766X\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X2401766X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

激光粉末熔床(LPBF)可有效制造复杂的 316L 不锈钢部件,但往往会产生显著的拉伸残余应力和各向异性微结构,从而影响机械性能。在 1050-1100 °C 温度下进行固溶退火可降低各向异性并减轻这些应力,但可能会降低抗应力腐蚀开裂(SCC)能力。因此,本研究将固溶退火与严重喷丸强化(SSP)相结合,以提高表面性能和 SCC 性能。结果表明,SSP 在表面产生的压残余应力超过 -700 兆帕,深度可达 300 微米,显著降低了拉应力。此外,SSP 还提高了表面硬度,使表面粗糙度减半,从而增强了抗应力腐蚀开裂能力和机械性能,使 SSP 成为 LPBF 316L 部件的一种有效后处理技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Severe shot peening: A promising solution for mitigating stress corrosion cracking in solution-annealed LPBF 316 l stainless steel
Laser powder bed fusion (LPBF) effectively fabricates intricate 316L stainless steel components but often results in significant tensile residual stresses and anisotropic microstructures, compromising mechanical performance. Solution annealing at 1050–1100 °C reduces anisotropy along with mitigating these stresses but may reduce stress corrosion cracking resistance (SCC). Therefore, this study combined solution annealing with severe shot peening (SSP) to enhance the surface properties and the SCC performance. The results showed that SSP introduced compressive residual stresses exceeding −700 MPa on the surface and up to 300 µm in depth, significantly reducing tensile stresses. Additionally, SSP increased surface hardness and halved surface roughness, potentially enhancing stress corrosion cracking resistance and mechanical performance, establishing SSP as an effective post-processing technique for LPBF 316L components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
期刊最新文献
Molecular dynamics simulation of arc ablation on Mo or W doped CuCr contact materials Effects of ultrasonic surface rolling process on the microstructure and wear resistance of 2195 Al-Li alloy processed by laser powder bed fusion Phospholipid micelles-encapsulated perovskite nanocrystals via dual solvent exchange for human hela cervical cancer cells imaging Enhancing heating performance and temperature uniformity of Cu/Ag mesh transparent heaters by a composite reduced graphene oxide layer Novel flexible near-infrared laser detectors based on Bi2S3 nanorods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1