{"title":"揭示从锰矿中提取氧化锰锂阴极的电化学原理,提高锂离子电池性能","authors":"Mohamed Kerroumi , Mehdi Karbak , Hamza Afaryate , Ayyoub El-Bchiri , Mohamed Aqil , Bouchaib Manoun , Youssef Tamraoui , Hubert Girault , Fouad Ghamouss","doi":"10.1016/j.electacta.2024.145286","DOIUrl":null,"url":null,"abstract":"<div><div>Implementing manganese-based electrode materials in lithium-ion batteries (LIBs) faces several challenges due to the low grade of manganese ore, which necessitates multiple purification and transformation steps before acquiring battery-grade electrode materials, increasing costs. At present, most Lithium Manganese Oxide (LMO) materials are synthesized using electrolytic manganese dioxide, and the development of new processes, such as hydrometallurgical processes is important for achieving a cost-effective synthesis of LMO materials. In this work, we develop a full synthesis process of LMO materials from manganese ore, through acid leaching, forming manganese sulfate monohydrate (MnSO<sub>4</sub>·H<sub>2</sub>O), an optimized thermal decomposition (at 900, 950 or 1000 °C) producing different Mn<sub>3</sub>O<sub>4</sub> materials and a solid-state reaction, achieving the synthesis of LMO. The latter was used as a cathode material for LIB exhibiting a specific capacity comparable to the state-of-the-art LMO cathode with a remarkable cycling stability of 800 cycles with <20 % in capacity loss. These performances were attributed to the excellent redox reversibility of the LMO cathode, characterized by voltammetry and <em>in operando</em> and <em>in situ</em> characterization by Raman and XRD.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"509 ","pages":"Article 145286"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling electrochemical insights of lithium manganese oxide cathodes from manganese ore for enhanced lithium-ion battery performance\",\"authors\":\"Mohamed Kerroumi , Mehdi Karbak , Hamza Afaryate , Ayyoub El-Bchiri , Mohamed Aqil , Bouchaib Manoun , Youssef Tamraoui , Hubert Girault , Fouad Ghamouss\",\"doi\":\"10.1016/j.electacta.2024.145286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Implementing manganese-based electrode materials in lithium-ion batteries (LIBs) faces several challenges due to the low grade of manganese ore, which necessitates multiple purification and transformation steps before acquiring battery-grade electrode materials, increasing costs. At present, most Lithium Manganese Oxide (LMO) materials are synthesized using electrolytic manganese dioxide, and the development of new processes, such as hydrometallurgical processes is important for achieving a cost-effective synthesis of LMO materials. In this work, we develop a full synthesis process of LMO materials from manganese ore, through acid leaching, forming manganese sulfate monohydrate (MnSO<sub>4</sub>·H<sub>2</sub>O), an optimized thermal decomposition (at 900, 950 or 1000 °C) producing different Mn<sub>3</sub>O<sub>4</sub> materials and a solid-state reaction, achieving the synthesis of LMO. The latter was used as a cathode material for LIB exhibiting a specific capacity comparable to the state-of-the-art LMO cathode with a remarkable cycling stability of 800 cycles with <20 % in capacity loss. These performances were attributed to the excellent redox reversibility of the LMO cathode, characterized by voltammetry and <em>in operando</em> and <em>in situ</em> characterization by Raman and XRD.</div></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"509 \",\"pages\":\"Article 145286\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013468624015226\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468624015226","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Unveiling electrochemical insights of lithium manganese oxide cathodes from manganese ore for enhanced lithium-ion battery performance
Implementing manganese-based electrode materials in lithium-ion batteries (LIBs) faces several challenges due to the low grade of manganese ore, which necessitates multiple purification and transformation steps before acquiring battery-grade electrode materials, increasing costs. At present, most Lithium Manganese Oxide (LMO) materials are synthesized using electrolytic manganese dioxide, and the development of new processes, such as hydrometallurgical processes is important for achieving a cost-effective synthesis of LMO materials. In this work, we develop a full synthesis process of LMO materials from manganese ore, through acid leaching, forming manganese sulfate monohydrate (MnSO4·H2O), an optimized thermal decomposition (at 900, 950 or 1000 °C) producing different Mn3O4 materials and a solid-state reaction, achieving the synthesis of LMO. The latter was used as a cathode material for LIB exhibiting a specific capacity comparable to the state-of-the-art LMO cathode with a remarkable cycling stability of 800 cycles with <20 % in capacity loss. These performances were attributed to the excellent redox reversibility of the LMO cathode, characterized by voltammetry and in operando and in situ characterization by Raman and XRD.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.