Xiaoxiang Gao, Xiangjun Chen, Muyang Lin, Wentong Yue, Hongjie Hu, Siyu Qin, Fangao Zhang, Zhiyuan Lou, Lu Yin, Hao Huang, Sai Zhou, Yizhou Bian, Xinyi Yang, Yangzhi Zhu, Jing Mu, Xinyu Wang, Geonho Park, Chengchangfeng Lu, Ruotao Wang, Ray S. Wu, Joseph Wang, Jinghong Li, Sheng Xu
{"title":"基于单个传感器的可穿戴超声造影系统","authors":"Xiaoxiang Gao, Xiangjun Chen, Muyang Lin, Wentong Yue, Hongjie Hu, Siyu Qin, Fangao Zhang, Zhiyuan Lou, Lu Yin, Hao Huang, Sai Zhou, Yizhou Bian, Xinyi Yang, Yangzhi Zhu, Jing Mu, Xinyu Wang, Geonho Park, Chengchangfeng Lu, Ruotao Wang, Ray S. Wu, Joseph Wang, Jinghong Li, Sheng Xu","doi":"10.1038/s41928-024-01271-4","DOIUrl":null,"url":null,"abstract":"Wearable electromyography devices can detect muscular activity for health monitoring and body motion tracking, but this approach is limited by weak and stochastic signals with a low spatial resolution. Alternatively, echomyography can detect muscle movement using ultrasound waves, but typically relies on complex transducer arrays, which are bulky, have high power consumption and can limit user mobility. Here we report a fully integrated wearable echomyography system that consists of a customized single transducer, a wireless circuit for data processing and an on-board battery for power. The system can be attached to the skin and provides accurate long-term wireless monitoring of muscles. To illustrate its capabilities, we use this system to detect the activity of the diaphragm, which allows the recognition of different breathing modes. We also develop a deep learning algorithm to correlate the single-transducer radio-frequency data from forearm muscles with hand gestures to accurately and continuously track 13 hand joints with a mean error of only 7.9°. An echomyography system based on a single transducer can be integrated into a wearable patch and used to monitor breathing patterns and hand gestures.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 11","pages":"1035-1046"},"PeriodicalIF":33.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A wearable echomyography system based on a single transducer\",\"authors\":\"Xiaoxiang Gao, Xiangjun Chen, Muyang Lin, Wentong Yue, Hongjie Hu, Siyu Qin, Fangao Zhang, Zhiyuan Lou, Lu Yin, Hao Huang, Sai Zhou, Yizhou Bian, Xinyi Yang, Yangzhi Zhu, Jing Mu, Xinyu Wang, Geonho Park, Chengchangfeng Lu, Ruotao Wang, Ray S. Wu, Joseph Wang, Jinghong Li, Sheng Xu\",\"doi\":\"10.1038/s41928-024-01271-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wearable electromyography devices can detect muscular activity for health monitoring and body motion tracking, but this approach is limited by weak and stochastic signals with a low spatial resolution. Alternatively, echomyography can detect muscle movement using ultrasound waves, but typically relies on complex transducer arrays, which are bulky, have high power consumption and can limit user mobility. Here we report a fully integrated wearable echomyography system that consists of a customized single transducer, a wireless circuit for data processing and an on-board battery for power. The system can be attached to the skin and provides accurate long-term wireless monitoring of muscles. To illustrate its capabilities, we use this system to detect the activity of the diaphragm, which allows the recognition of different breathing modes. We also develop a deep learning algorithm to correlate the single-transducer radio-frequency data from forearm muscles with hand gestures to accurately and continuously track 13 hand joints with a mean error of only 7.9°. An echomyography system based on a single transducer can be integrated into a wearable patch and used to monitor breathing patterns and hand gestures.\",\"PeriodicalId\":19064,\"journal\":{\"name\":\"Nature Electronics\",\"volume\":\"7 11\",\"pages\":\"1035-1046\"},\"PeriodicalIF\":33.7000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41928-024-01271-4\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-024-01271-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A wearable echomyography system based on a single transducer
Wearable electromyography devices can detect muscular activity for health monitoring and body motion tracking, but this approach is limited by weak and stochastic signals with a low spatial resolution. Alternatively, echomyography can detect muscle movement using ultrasound waves, but typically relies on complex transducer arrays, which are bulky, have high power consumption and can limit user mobility. Here we report a fully integrated wearable echomyography system that consists of a customized single transducer, a wireless circuit for data processing and an on-board battery for power. The system can be attached to the skin and provides accurate long-term wireless monitoring of muscles. To illustrate its capabilities, we use this system to detect the activity of the diaphragm, which allows the recognition of different breathing modes. We also develop a deep learning algorithm to correlate the single-transducer radio-frequency data from forearm muscles with hand gestures to accurately and continuously track 13 hand joints with a mean error of only 7.9°. An echomyography system based on a single transducer can be integrated into a wearable patch and used to monitor breathing patterns and hand gestures.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.