同型半胱氨酸 S-甲基转移酶 3 积极调节玉米的耐镉性

IF 6 1区 生物学 Q1 PLANT SCIENCES Plant, Cell & Environment Pub Date : 2024-11-01 DOI:10.1111/pce.15244
Kaina Lin, Kewen Xu, Yiqing Chen, Yifan Lu, Meixue Zhou, Fangbin Cao
{"title":"同型半胱氨酸 S-甲基转移酶 3 积极调节玉米的耐镉性","authors":"Kaina Lin, Kewen Xu, Yiqing Chen, Yifan Lu, Meixue Zhou, Fangbin Cao","doi":"10.1111/pce.15244","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing contamination of agricultural soils with cadmium (Cd) poses a significant threat to human health and global food security. Plants initiate a series of mechanisms to reduce Cd toxicity. However, the response of maize to Cd toxicity remains poorly understood. In this study, we identified that ZmHMT3, which encodes a homocysteine S-methyltransferases family protein, acted as a regulator of Cd tolerance in maize. Subcellular localization and in situ PCR exhibited that ZmHMT3 was localized in the cytoplasm and predominantly expressed in the phloem. Overexpression of ZmHMT3 enhanced Cd tolerance and reduced Cd concentration in both shoots and roots. In contrast, ZmHMT3 mutants attenuated Cd tolerance but did not change shoot Cd concentration. Heterologous overexpression of ZmHMT3 in rice enhanced Cd tolerance and reduced grain Cd concentration. Transcriptome analysis revealed that ZmHMT3 upregulated the expression of stress-responsive genes, especially glutathione S-transferases (GSTs) and transcription factors, including MYBs, NACs and WRKYs, and modulates the expression of different ATP-binding cassette (ABC) transporters, thereby enhancing Cd tolerance. Collectively, these findings highlight the pivotal role of ZmHMT3 in Cd tolerance and as a candidate gene for improving Cd tolerance in elite maize varieties.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homocysteine S-Methyltransferase 3 Positively Regulates Cadmium Tolerance in Maize.\",\"authors\":\"Kaina Lin, Kewen Xu, Yiqing Chen, Yifan Lu, Meixue Zhou, Fangbin Cao\",\"doi\":\"10.1111/pce.15244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The increasing contamination of agricultural soils with cadmium (Cd) poses a significant threat to human health and global food security. Plants initiate a series of mechanisms to reduce Cd toxicity. However, the response of maize to Cd toxicity remains poorly understood. In this study, we identified that ZmHMT3, which encodes a homocysteine S-methyltransferases family protein, acted as a regulator of Cd tolerance in maize. Subcellular localization and in situ PCR exhibited that ZmHMT3 was localized in the cytoplasm and predominantly expressed in the phloem. Overexpression of ZmHMT3 enhanced Cd tolerance and reduced Cd concentration in both shoots and roots. In contrast, ZmHMT3 mutants attenuated Cd tolerance but did not change shoot Cd concentration. Heterologous overexpression of ZmHMT3 in rice enhanced Cd tolerance and reduced grain Cd concentration. Transcriptome analysis revealed that ZmHMT3 upregulated the expression of stress-responsive genes, especially glutathione S-transferases (GSTs) and transcription factors, including MYBs, NACs and WRKYs, and modulates the expression of different ATP-binding cassette (ABC) transporters, thereby enhancing Cd tolerance. Collectively, these findings highlight the pivotal role of ZmHMT3 in Cd tolerance and as a candidate gene for improving Cd tolerance in elite maize varieties.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.15244\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15244","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

农业土壤中的镉(Cd)污染日益严重,对人类健康和全球粮食安全构成了重大威胁。植物启动了一系列机制来降低镉的毒性。然而,人们对玉米对镉毒性的反应仍然知之甚少。在这项研究中,我们发现编码高半胱氨酸 S-甲基转移酶家族蛋白的 ZmHMT3 是玉米耐镉性的调控因子。亚细胞定位和原位 PCR 显示,ZmHMT3 定位于细胞质中,主要在韧皮部表达。ZmHMT3 的过表达增强了镉耐受性,并降低了芽和根中的镉浓度。与此相反,ZmHMT3 突变体削弱了镉耐受性,但并不改变芽中的镉浓度。在水稻中异源过表达 ZmHMT3 可增强镉耐受性并降低谷粒的镉浓度。转录组分析表明,ZmHMT3 能上调胁迫响应基因的表达,特别是谷胱甘肽 S-转移酶(GSTs)和转录因子(包括 MYBs、NACs 和 WRKYs),并能调节不同 ATP 结合盒(ABC)转运体的表达,从而增强镉耐受性。总之,这些研究结果凸显了 ZmHMT3 在镉耐受性中的关键作用,是提高玉米优良品种镉耐受性的候选基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Homocysteine S-Methyltransferase 3 Positively Regulates Cadmium Tolerance in Maize.

The increasing contamination of agricultural soils with cadmium (Cd) poses a significant threat to human health and global food security. Plants initiate a series of mechanisms to reduce Cd toxicity. However, the response of maize to Cd toxicity remains poorly understood. In this study, we identified that ZmHMT3, which encodes a homocysteine S-methyltransferases family protein, acted as a regulator of Cd tolerance in maize. Subcellular localization and in situ PCR exhibited that ZmHMT3 was localized in the cytoplasm and predominantly expressed in the phloem. Overexpression of ZmHMT3 enhanced Cd tolerance and reduced Cd concentration in both shoots and roots. In contrast, ZmHMT3 mutants attenuated Cd tolerance but did not change shoot Cd concentration. Heterologous overexpression of ZmHMT3 in rice enhanced Cd tolerance and reduced grain Cd concentration. Transcriptome analysis revealed that ZmHMT3 upregulated the expression of stress-responsive genes, especially glutathione S-transferases (GSTs) and transcription factors, including MYBs, NACs and WRKYs, and modulates the expression of different ATP-binding cassette (ABC) transporters, thereby enhancing Cd tolerance. Collectively, these findings highlight the pivotal role of ZmHMT3 in Cd tolerance and as a candidate gene for improving Cd tolerance in elite maize varieties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
期刊最新文献
Whole-Genome Identification of the Flax Fatty Acid Desaturase Gene Family and Functional Analysis of the LuFAD2.1 Gene Under Cold Stress Conditions. Metabolism Interaction Between Bacillus cereus SESY and Brassica napus Contributes to Enhance Host Selenium Absorption and Accumulation. Out on a Limb: Testing the Hydraulic Vulnerability Segmentation Hypothesis in Trees Across Multiple Ecosystems. Wheat Tae-MIR1118 Constitutes a Functional Module With Calmodulin TaCaM2-1 and MYB Member TaMYB44 to Modulate Plant Low-N Stress Response. Diurnal Rhythmicity in the Rhizosphere Microbiome-Mechanistic Insights and Significance for Rhizosphere Function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1