利用 RUCS 算法开发用于快速量化革兰氏阴性菌生物标志物的新型数字 PCR 检测方法。

IF 4.2 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Methods Pub Date : 2024-10-30 DOI:10.1016/j.ymeth.2024.10.011
Alexandra Bogožalec Košir , Špela Alič , Viktorija Tomič , Dane Lužnik , Tanja Dreo , Mojca Milavec
{"title":"利用 RUCS 算法开发用于快速量化革兰氏阴性菌生物标志物的新型数字 PCR 检测方法。","authors":"Alexandra Bogožalec Košir ,&nbsp;Špela Alič ,&nbsp;Viktorija Tomič ,&nbsp;Dane Lužnik ,&nbsp;Tanja Dreo ,&nbsp;Mojca Milavec","doi":"10.1016/j.ymeth.2024.10.011","DOIUrl":null,"url":null,"abstract":"<div><div>Rapid and accurate identification of bacterial pathogens is crucial for effective treatment and infection control, particularly in hospital settings. Conventional methods like culture techniques and MALDI-TOF mass spectrometry are often time-consuming and less sensitive. This study addresses the need for faster and more precise diagnostic methods by developing novel digital PCR (dPCR) assays for the rapid quantification of biomarkers from three Gram-negative bacteria: <em>Acinetobacter baumannii</em>, <em>Klebsiella pneumoniae</em>, and <em>Pseudomonas aeruginosa</em>.</div><div>Utilizing publicly available genomes and the <em>rapid identification of PCR primers for unique core sequences</em> or RUCS algorithm, we designed highly specific dPCR assays. These assays were validated using synthetic DNA, bacterial genomic DNA, and DNA extracted from clinical samples. The developed dPCR methods demonstrated wide linearity, a low limit of detection (∼30 copies per reaction), and robust analytical performance with measurement uncertainty below 25 %. The assays showed high repeatability and intermediate precision, with no cross-reactivity observed. Comparison with MALDI-TOF mass spectrometry revealed substantial concordance, highlighting the methods’ suitability for clinical diagnostics.</div><div>This study underscores the potential of dPCR for rapid and precise quantification of Gram-negative bacterial biomarkers. The developed methods offer significant improvements over existing techniques, providing faster, more accurate, and SI-traceable measurements. These advancements could enhance clinical diagnostics and infection control practices.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"232 ","pages":"Pages 72-80"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of novel digital PCR assays for the rapid quantification of Gram-negative bacteria biomarkers using RUCS algorithm\",\"authors\":\"Alexandra Bogožalec Košir ,&nbsp;Špela Alič ,&nbsp;Viktorija Tomič ,&nbsp;Dane Lužnik ,&nbsp;Tanja Dreo ,&nbsp;Mojca Milavec\",\"doi\":\"10.1016/j.ymeth.2024.10.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rapid and accurate identification of bacterial pathogens is crucial for effective treatment and infection control, particularly in hospital settings. Conventional methods like culture techniques and MALDI-TOF mass spectrometry are often time-consuming and less sensitive. This study addresses the need for faster and more precise diagnostic methods by developing novel digital PCR (dPCR) assays for the rapid quantification of biomarkers from three Gram-negative bacteria: <em>Acinetobacter baumannii</em>, <em>Klebsiella pneumoniae</em>, and <em>Pseudomonas aeruginosa</em>.</div><div>Utilizing publicly available genomes and the <em>rapid identification of PCR primers for unique core sequences</em> or RUCS algorithm, we designed highly specific dPCR assays. These assays were validated using synthetic DNA, bacterial genomic DNA, and DNA extracted from clinical samples. The developed dPCR methods demonstrated wide linearity, a low limit of detection (∼30 copies per reaction), and robust analytical performance with measurement uncertainty below 25 %. The assays showed high repeatability and intermediate precision, with no cross-reactivity observed. Comparison with MALDI-TOF mass spectrometry revealed substantial concordance, highlighting the methods’ suitability for clinical diagnostics.</div><div>This study underscores the potential of dPCR for rapid and precise quantification of Gram-negative bacterial biomarkers. The developed methods offer significant improvements over existing techniques, providing faster, more accurate, and SI-traceable measurements. These advancements could enhance clinical diagnostics and infection control practices.</div></div>\",\"PeriodicalId\":390,\"journal\":{\"name\":\"Methods\",\"volume\":\"232 \",\"pages\":\"Pages 72-80\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1046202324002366\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202324002366","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

快速准确地鉴定细菌病原体对有效治疗和感染控制至关重要,尤其是在医院环境中。培养技术和 MALDI-TOF 质谱等传统方法往往耗时较长,灵敏度较低。为了满足对更快、更精确的诊断方法的需求,本研究开发了新型数字 PCR(dPCR)测定法,用于快速量化三种革兰氏阴性细菌的生物标记物:鲍曼不动杆菌、肺炎克雷伯氏菌和铜绿假单胞菌。利用可公开获得的基因组和针对独特核心序列或 RUCS 算法的 PCR 引物的快速鉴定,我们设计出了高度特异性的 dPCR 检测方法。我们使用合成 DNA、细菌基因组 DNA 和从临床样本中提取的 DNA 对这些检测方法进行了验证。所开发的 dPCR 方法具有宽线性、低检测限(每反应 30 个拷贝)和稳健的分析性能,测量不确定性低于 25%。检测结果显示出较高的重复性和中等精度,未发现交叉反应。与 MALDI-TOF 质谱法的比较显示,二者具有很高的一致性,凸显了该方法在临床诊断中的适用性。这项研究强调了 dPCR 在快速、精确定量革兰氏阴性细菌生物标记物方面的潜力。与现有技术相比,所开发的方法有了重大改进,可提供更快、更准确和可溯源的测量结果。这些进步可加强临床诊断和感染控制实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of novel digital PCR assays for the rapid quantification of Gram-negative bacteria biomarkers using RUCS algorithm
Rapid and accurate identification of bacterial pathogens is crucial for effective treatment and infection control, particularly in hospital settings. Conventional methods like culture techniques and MALDI-TOF mass spectrometry are often time-consuming and less sensitive. This study addresses the need for faster and more precise diagnostic methods by developing novel digital PCR (dPCR) assays for the rapid quantification of biomarkers from three Gram-negative bacteria: Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa.
Utilizing publicly available genomes and the rapid identification of PCR primers for unique core sequences or RUCS algorithm, we designed highly specific dPCR assays. These assays were validated using synthetic DNA, bacterial genomic DNA, and DNA extracted from clinical samples. The developed dPCR methods demonstrated wide linearity, a low limit of detection (∼30 copies per reaction), and robust analytical performance with measurement uncertainty below 25 %. The assays showed high repeatability and intermediate precision, with no cross-reactivity observed. Comparison with MALDI-TOF mass spectrometry revealed substantial concordance, highlighting the methods’ suitability for clinical diagnostics.
This study underscores the potential of dPCR for rapid and precise quantification of Gram-negative bacterial biomarkers. The developed methods offer significant improvements over existing techniques, providing faster, more accurate, and SI-traceable measurements. These advancements could enhance clinical diagnostics and infection control practices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods
Methods 生物-生化研究方法
CiteScore
9.80
自引率
2.10%
发文量
222
审稿时长
11.3 weeks
期刊介绍: Methods focuses on rapidly developing techniques in the experimental biological and medical sciences. Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.
期刊最新文献
Robust feature learning using contractive autoencoders for multi-omics clustering in cancer subtyping. Optimizing retinal Imaging: Evaluation of ultrasmall TiO2 Nanoparticle- fluorescein conjugates for improved Fundus fluorescein angiography. Ab-Amy 2.0: Predicting light chain amyloidogenic risk of therapeutic antibodies based on antibody language model. Data preprocessing methods for selective sweep detection using convolutional neural networks. SITP: A single cell bioinformatics analysis flow captures proteasome markers in the development of breast cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1