转化光生物学:实现室内园艺的动态照明。

IF 17.3 1区 生物学 Q1 PLANT SCIENCES Trends in Plant Science Pub Date : 2024-10-30 DOI:10.1016/j.tplants.2024.10.006
Ulrike Bechtold, Meike Burow, Saijaliisa Kangasjärvi
{"title":"转化光生物学:实现室内园艺的动态照明。","authors":"Ulrike Bechtold, Meike Burow, Saijaliisa Kangasjärvi","doi":"10.1016/j.tplants.2024.10.006","DOIUrl":null,"url":null,"abstract":"<p><p>Crop productivity depends on the ability of plants to thrive across different growth environments. In nature, light conditions fluctuate due to diurnal and seasonal changes in direction, duration, intensity, and spectrum. Laboratory studies, predominantly conducted with arabidopsis (Arabidopsis thaliana), have provided valuable insights into the metabolic and regulatory strategies that plants employ to cope with varying light intensities. However, there has been less focus on how horticultural crops tolerate dynamically changing light conditions during the photoperiod. In this review we connect insights from photobiology in model plants to the application of dynamic lighting in indoor horticulture. We explore how model species respond to fluctuating light intensities and discuss how this knowledge could be translated for new lighting solutions in controlled environment agriculture.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Translational photobiology: towards dynamic lighting in indoor horticulture.\",\"authors\":\"Ulrike Bechtold, Meike Burow, Saijaliisa Kangasjärvi\",\"doi\":\"10.1016/j.tplants.2024.10.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Crop productivity depends on the ability of plants to thrive across different growth environments. In nature, light conditions fluctuate due to diurnal and seasonal changes in direction, duration, intensity, and spectrum. Laboratory studies, predominantly conducted with arabidopsis (Arabidopsis thaliana), have provided valuable insights into the metabolic and regulatory strategies that plants employ to cope with varying light intensities. However, there has been less focus on how horticultural crops tolerate dynamically changing light conditions during the photoperiod. In this review we connect insights from photobiology in model plants to the application of dynamic lighting in indoor horticulture. We explore how model species respond to fluctuating light intensities and discuss how this knowledge could be translated for new lighting solutions in controlled environment agriculture.</p>\",\"PeriodicalId\":23264,\"journal\":{\"name\":\"Trends in Plant Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tplants.2024.10.006\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2024.10.006","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

农作物的产量取决于植物在不同生长环境中茁壮成长的能力。在自然界中,光照条件因方向、持续时间、强度和光谱的昼夜变化和季节变化而波动。主要以拟南芥(Arabidopsis thaliana)为对象进行的实验室研究为了解植物应对不同光照强度所采用的代谢和调控策略提供了宝贵的资料。然而,园艺作物如何耐受光周期内动态变化的光照条件却鲜有人关注。在这篇综述中,我们将从模式植物的光生物学中获得的见解与室内园艺中动态光照的应用联系起来。我们探讨了模式物种如何对波动的光照强度做出反应,并讨论了如何将这些知识转化为可控环境农业中的新照明解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Translational photobiology: towards dynamic lighting in indoor horticulture.

Crop productivity depends on the ability of plants to thrive across different growth environments. In nature, light conditions fluctuate due to diurnal and seasonal changes in direction, duration, intensity, and spectrum. Laboratory studies, predominantly conducted with arabidopsis (Arabidopsis thaliana), have provided valuable insights into the metabolic and regulatory strategies that plants employ to cope with varying light intensities. However, there has been less focus on how horticultural crops tolerate dynamically changing light conditions during the photoperiod. In this review we connect insights from photobiology in model plants to the application of dynamic lighting in indoor horticulture. We explore how model species respond to fluctuating light intensities and discuss how this knowledge could be translated for new lighting solutions in controlled environment agriculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Plant Science
Trends in Plant Science 生物-植物科学
CiteScore
31.30
自引率
2.00%
发文量
196
审稿时长
6-12 weeks
期刊介绍: Trends in Plant Science is the primary monthly review journal in plant science, encompassing a wide range from molecular biology to ecology. It offers concise and accessible reviews and opinions on fundamental plant science topics, providing quick insights into current thinking and developments in plant biology. Geared towards researchers, students, and teachers, the articles are authoritative, authored by both established leaders in the field and emerging talents.
期刊最新文献
Do storage reserves contribute to plant phenotypic plasticity? Plasticity in plant mating systems. Soil compaction sensing mechanisms and root responses. The whole and its parts: cell-specific functions of brassinosteroids. Ecological intensification index: reducing global footprint of agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1