Lei Lu, Tingting Zhu, Ying Tan, Jiandong Zhou, Jenny Yang, Lei Clifton, Yuan-Ting Zhang, David A Clifton
{"title":"用于心率变异性频谱估计的改进矩阵补全。","authors":"Lei Lu, Tingting Zhu, Ying Tan, Jiandong Zhou, Jenny Yang, Lei Clifton, Yuan-Ting Zhang, David A Clifton","doi":"10.3934/mbe.2024296","DOIUrl":null,"url":null,"abstract":"<p><p>Heart rate variability (HRV) is an important metric in cardiovascular health monitoring. Spectral analysis of HRV provides essential insights into the functioning of the cardiac autonomic nervous system. However, data artefacts could degrade signal quality, potentially leading to unreliable assessments of cardiac activities. In this study, we introduced a novel approach for estimating uncertainties in HRV spectrum based on matrix completion. The proposed method utilises the low-rank characteristic of HRV spectrum matrix to efficiently estimate data uncertainties. In addition, we developed a refined matrix completion technique to enhance the estimation accuracy and computational cost. Benchmarking on five public datasets, our model shows effectiveness and reliability in estimating uncertainties in HRV spectrum, and has superior performance against five deep learning models. The results underscore the potential of our developed matrix completion-based statistical machine learning model in providing reliable HRV spectrum uncertainty estimation.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refined matrix completion for spectrum estimation of heart rate variability.\",\"authors\":\"Lei Lu, Tingting Zhu, Ying Tan, Jiandong Zhou, Jenny Yang, Lei Clifton, Yuan-Ting Zhang, David A Clifton\",\"doi\":\"10.3934/mbe.2024296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heart rate variability (HRV) is an important metric in cardiovascular health monitoring. Spectral analysis of HRV provides essential insights into the functioning of the cardiac autonomic nervous system. However, data artefacts could degrade signal quality, potentially leading to unreliable assessments of cardiac activities. In this study, we introduced a novel approach for estimating uncertainties in HRV spectrum based on matrix completion. The proposed method utilises the low-rank characteristic of HRV spectrum matrix to efficiently estimate data uncertainties. In addition, we developed a refined matrix completion technique to enhance the estimation accuracy and computational cost. Benchmarking on five public datasets, our model shows effectiveness and reliability in estimating uncertainties in HRV spectrum, and has superior performance against five deep learning models. The results underscore the potential of our developed matrix completion-based statistical machine learning model in providing reliable HRV spectrum uncertainty estimation.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2024296\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024296","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Refined matrix completion for spectrum estimation of heart rate variability.
Heart rate variability (HRV) is an important metric in cardiovascular health monitoring. Spectral analysis of HRV provides essential insights into the functioning of the cardiac autonomic nervous system. However, data artefacts could degrade signal quality, potentially leading to unreliable assessments of cardiac activities. In this study, we introduced a novel approach for estimating uncertainties in HRV spectrum based on matrix completion. The proposed method utilises the low-rank characteristic of HRV spectrum matrix to efficiently estimate data uncertainties. In addition, we developed a refined matrix completion technique to enhance the estimation accuracy and computational cost. Benchmarking on five public datasets, our model shows effectiveness and reliability in estimating uncertainties in HRV spectrum, and has superior performance against five deep learning models. The results underscore the potential of our developed matrix completion-based statistical machine learning model in providing reliable HRV spectrum uncertainty estimation.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).