{"title":"作为原多肽的聚-Dha 序列:一种原创性机制假设导致发现长效血管扩张剂 KU04212。","authors":"Allen Alonso Haysom-Rodríguez, Steven Bloom","doi":"10.1021/jacsau.4c00603","DOIUrl":null,"url":null,"abstract":"<p><p>The construction of polypeptides was revolutionized by Merrifield's solid-phase synthesis more than half a century ago. Herein, we explore a completely different approach to making peptides. We test an original mechanistic postulate wherein a single peptide made entirely of dehydroalanine (Dha) residues can give rise to regio- and stereodefined peptides by iterative conjugate addition of one- or two-electron nucleophiles. Each nucleophile appends a unique amino acid side chain to the peptide backbone. We show that side chain addition is not random. Side chains are added in one of two ways, in an electrophilicity-gated fashion (most cases) or in a substrate-directed manner, depending on the first nucleophile used in the synthesis. One peptide made in this series, KU04212, a <i>first-in-class</i> polyazole peptide, was found to reduce vascular length density (-17%; <i>p</i> < 0.05) and increase vessel diameter (124%; <i>p</i> < 0.001) in healthy day 6 chick embryos at 24 h post-single dose. It also rescued 75% of the embryos administered a 32-fold lethal dose of ischemia-inducing CoCl<sub>2</sub> after 12 h and 12.5% of the embryos after 24 h. In comparison to three mechanistically distinct vasodilators, e.g., isosorbide mononitrate, amlodipine besylate, and prazosin, only KU04212 showed long-acting effects <i>in vivo</i>, making it an enticing lead for the treatment of ischemic disorders.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"4 10","pages":"3910-3920"},"PeriodicalIF":8.5000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522928/pdf/","citationCount":"0","resultStr":"{\"title\":\"Poly-Dha Sequences as <i>Pro</i>-polypeptides: An Original Mechanistic Postulate Leads to the Discovery of a Long-Acting Vasodilator KU04212.\",\"authors\":\"Allen Alonso Haysom-Rodríguez, Steven Bloom\",\"doi\":\"10.1021/jacsau.4c00603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The construction of polypeptides was revolutionized by Merrifield's solid-phase synthesis more than half a century ago. Herein, we explore a completely different approach to making peptides. We test an original mechanistic postulate wherein a single peptide made entirely of dehydroalanine (Dha) residues can give rise to regio- and stereodefined peptides by iterative conjugate addition of one- or two-electron nucleophiles. Each nucleophile appends a unique amino acid side chain to the peptide backbone. We show that side chain addition is not random. Side chains are added in one of two ways, in an electrophilicity-gated fashion (most cases) or in a substrate-directed manner, depending on the first nucleophile used in the synthesis. One peptide made in this series, KU04212, a <i>first-in-class</i> polyazole peptide, was found to reduce vascular length density (-17%; <i>p</i> < 0.05) and increase vessel diameter (124%; <i>p</i> < 0.001) in healthy day 6 chick embryos at 24 h post-single dose. It also rescued 75% of the embryos administered a 32-fold lethal dose of ischemia-inducing CoCl<sub>2</sub> after 12 h and 12.5% of the embryos after 24 h. In comparison to three mechanistically distinct vasodilators, e.g., isosorbide mononitrate, amlodipine besylate, and prazosin, only KU04212 showed long-acting effects <i>in vivo</i>, making it an enticing lead for the treatment of ischemic disorders.</p>\",\"PeriodicalId\":94060,\"journal\":{\"name\":\"JACS Au\",\"volume\":\"4 10\",\"pages\":\"3910-3920\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522928/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/jacsau.4c00603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/28 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.4c00603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Poly-Dha Sequences as Pro-polypeptides: An Original Mechanistic Postulate Leads to the Discovery of a Long-Acting Vasodilator KU04212.
The construction of polypeptides was revolutionized by Merrifield's solid-phase synthesis more than half a century ago. Herein, we explore a completely different approach to making peptides. We test an original mechanistic postulate wherein a single peptide made entirely of dehydroalanine (Dha) residues can give rise to regio- and stereodefined peptides by iterative conjugate addition of one- or two-electron nucleophiles. Each nucleophile appends a unique amino acid side chain to the peptide backbone. We show that side chain addition is not random. Side chains are added in one of two ways, in an electrophilicity-gated fashion (most cases) or in a substrate-directed manner, depending on the first nucleophile used in the synthesis. One peptide made in this series, KU04212, a first-in-class polyazole peptide, was found to reduce vascular length density (-17%; p < 0.05) and increase vessel diameter (124%; p < 0.001) in healthy day 6 chick embryos at 24 h post-single dose. It also rescued 75% of the embryos administered a 32-fold lethal dose of ischemia-inducing CoCl2 after 12 h and 12.5% of the embryos after 24 h. In comparison to three mechanistically distinct vasodilators, e.g., isosorbide mononitrate, amlodipine besylate, and prazosin, only KU04212 showed long-acting effects in vivo, making it an enticing lead for the treatment of ischemic disorders.