钛-锆-铌-钽-钼多主元难熔合金中局部化学波动与晶界强度之间的相关性

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Scripta Materialia Pub Date : 2024-10-31 DOI:10.1016/j.scriptamat.2024.116438
Xiaoli Luo , Weiji Lai , Yuxi He , Xincheng Xu , Qihang Xu , Deqiang You , Sheng Cao , Wei Li , Xiaojian Wang
{"title":"钛-锆-铌-钽-钼多主元难熔合金中局部化学波动与晶界强度之间的相关性","authors":"Xiaoli Luo ,&nbsp;Weiji Lai ,&nbsp;Yuxi He ,&nbsp;Xincheng Xu ,&nbsp;Qihang Xu ,&nbsp;Deqiang You ,&nbsp;Sheng Cao ,&nbsp;Wei Li ,&nbsp;Xiaojian Wang","doi":"10.1016/j.scriptamat.2024.116438","DOIUrl":null,"url":null,"abstract":"<div><div>Ti-Zr-Nb-Ta-Mo refractory multi-principal element alloys typically exhibit high yield strength while tensile ductility tends to be poor. In this study, we found that even after solid solution treatment of Ti-Zr-Nb-Ta-Mo alloys, significant change in ductility occur due to the local chemical fluctuations. Ta's dramatic chemical fluctuations cause variations in atomic-scale strain fields, leading to reduced grain boundary strength and brittle fracture. First-principles calculations show that (Ti, Zr)-rich at the grain boundaries increases the delocalization of valence electrons, leading to longer bond lengths and reduced crystal orbital bond index values, thereby causing grain boundary embrittlement. Our findings explore the root causes of brittleness in Ti-Zr-Nb-Ta-Mo alloys at the atomic and electronic scales, providing not only a method to analyze grain boundary embrittlement using bond length, electronic localization function and crystal orbital bond index, but also a theoretical guidance for improving the mechanical properties via grain boundary structure optimization.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"256 ","pages":"Article 116438"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlations between local chemical fluctuations and grain boundary strength in Ti-Zr-Nb-Ta-Mo refractory multi-principal element alloys\",\"authors\":\"Xiaoli Luo ,&nbsp;Weiji Lai ,&nbsp;Yuxi He ,&nbsp;Xincheng Xu ,&nbsp;Qihang Xu ,&nbsp;Deqiang You ,&nbsp;Sheng Cao ,&nbsp;Wei Li ,&nbsp;Xiaojian Wang\",\"doi\":\"10.1016/j.scriptamat.2024.116438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ti-Zr-Nb-Ta-Mo refractory multi-principal element alloys typically exhibit high yield strength while tensile ductility tends to be poor. In this study, we found that even after solid solution treatment of Ti-Zr-Nb-Ta-Mo alloys, significant change in ductility occur due to the local chemical fluctuations. Ta's dramatic chemical fluctuations cause variations in atomic-scale strain fields, leading to reduced grain boundary strength and brittle fracture. First-principles calculations show that (Ti, Zr)-rich at the grain boundaries increases the delocalization of valence electrons, leading to longer bond lengths and reduced crystal orbital bond index values, thereby causing grain boundary embrittlement. Our findings explore the root causes of brittleness in Ti-Zr-Nb-Ta-Mo alloys at the atomic and electronic scales, providing not only a method to analyze grain boundary embrittlement using bond length, electronic localization function and crystal orbital bond index, but also a theoretical guidance for improving the mechanical properties via grain boundary structure optimization.</div></div>\",\"PeriodicalId\":423,\"journal\":{\"name\":\"Scripta Materialia\",\"volume\":\"256 \",\"pages\":\"Article 116438\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scripta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359646224004731\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646224004731","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钛-锆-铌-钽-钼难熔多元素合金通常具有较高的屈服强度,而拉伸延展性往往较差。在这项研究中,我们发现即使在对 Ti-Zr-Nb-Ta-Mo 合金进行固溶处理后,由于局部化学波动,延展性也会发生显著变化。钽的剧烈化学波动会引起原子尺度应变场的变化,导致晶界强度降低和脆性断裂。第一性原理计算表明,晶界富含(Ti、Zr)会增加价电子的析出,导致键长变长和晶体轨道键指数值降低,从而引起晶界脆化。我们的研究结果从原子和电子尺度探讨了 Ti-Zr-Nb-Ta-Mo 合金脆性的根本原因,不仅提供了一种利用键长、电子局域化函数和晶体轨道键指数分析晶界脆性的方法,还为通过优化晶界结构改善机械性能提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Correlations between local chemical fluctuations and grain boundary strength in Ti-Zr-Nb-Ta-Mo refractory multi-principal element alloys
Ti-Zr-Nb-Ta-Mo refractory multi-principal element alloys typically exhibit high yield strength while tensile ductility tends to be poor. In this study, we found that even after solid solution treatment of Ti-Zr-Nb-Ta-Mo alloys, significant change in ductility occur due to the local chemical fluctuations. Ta's dramatic chemical fluctuations cause variations in atomic-scale strain fields, leading to reduced grain boundary strength and brittle fracture. First-principles calculations show that (Ti, Zr)-rich at the grain boundaries increases the delocalization of valence electrons, leading to longer bond lengths and reduced crystal orbital bond index values, thereby causing grain boundary embrittlement. Our findings explore the root causes of brittleness in Ti-Zr-Nb-Ta-Mo alloys at the atomic and electronic scales, providing not only a method to analyze grain boundary embrittlement using bond length, electronic localization function and crystal orbital bond index, but also a theoretical guidance for improving the mechanical properties via grain boundary structure optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
期刊最新文献
Effect of B4C addition on the microstructure and mechanical properties of 304L austenitic stainless steel fabricated using laser powder bed fusion Modelling the evolution of microstructural bands in a martensite/austenite Q&P-processed stainless steel Editorial Board Strain glass state in Ni50.3Ti29.7Hf20 high-temperature shape memory alloy An in-situ Raman spectroscopy investigation of the oxidation of proton irradiated and cold-worked 304L stainless steel in oxygenated water at 300°C
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1