Zakari Eckert , Jeremiah J. Boerner , Taylor H. Hall , Russell Hooper , Anne M. Grillet , Jose L. Pacheco
{"title":"PIC-DSMC 程序的基准验证","authors":"Zakari Eckert , Jeremiah J. Boerner , Taylor H. Hall , Russell Hooper , Anne M. Grillet , Jose L. Pacheco","doi":"10.1016/j.jcp.2024.113533","DOIUrl":null,"url":null,"abstract":"<div><div>We examine a number of common verification and benchmark problems for Particle-in-Cell and Direct Simulation Monte Carlo codes. Since results, including convergence rates, comparison to analytic solutions, and code-to-code comparisons, for these problems are often used as evidence of correctness for simulation codes, it is necessary to understand what successful verification using one or more of these problems implies about the correctness of the simulation code. To that end, a series of benchmark problems is performed in Aleph, a PIC-DSMC code developed at Sandia National Laboratories, including both at the canonical numerical parameters and others where verification should fail. The results presented suggest that improvements and extensions to current benchmark problems and additional problem specifications would benefit existing and future codes thereby providing greater confidence in predictive results.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"521 ","pages":"Article 113533"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benchmark verification of PIC-DSMC programs\",\"authors\":\"Zakari Eckert , Jeremiah J. Boerner , Taylor H. Hall , Russell Hooper , Anne M. Grillet , Jose L. Pacheco\",\"doi\":\"10.1016/j.jcp.2024.113533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We examine a number of common verification and benchmark problems for Particle-in-Cell and Direct Simulation Monte Carlo codes. Since results, including convergence rates, comparison to analytic solutions, and code-to-code comparisons, for these problems are often used as evidence of correctness for simulation codes, it is necessary to understand what successful verification using one or more of these problems implies about the correctness of the simulation code. To that end, a series of benchmark problems is performed in Aleph, a PIC-DSMC code developed at Sandia National Laboratories, including both at the canonical numerical parameters and others where verification should fail. The results presented suggest that improvements and extensions to current benchmark problems and additional problem specifications would benefit existing and future codes thereby providing greater confidence in predictive results.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"521 \",\"pages\":\"Article 113533\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124007812\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124007812","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
We examine a number of common verification and benchmark problems for Particle-in-Cell and Direct Simulation Monte Carlo codes. Since results, including convergence rates, comparison to analytic solutions, and code-to-code comparisons, for these problems are often used as evidence of correctness for simulation codes, it is necessary to understand what successful verification using one or more of these problems implies about the correctness of the simulation code. To that end, a series of benchmark problems is performed in Aleph, a PIC-DSMC code developed at Sandia National Laboratories, including both at the canonical numerical parameters and others where verification should fail. The results presented suggest that improvements and extensions to current benchmark problems and additional problem specifications would benefit existing and future codes thereby providing greater confidence in predictive results.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.