Zainab E. AlHadithy , Adnan A. AbdulRazak , Ahmed M.H. Abdulkadhim Al-Ghaban , Qusay F. Alsalhy , Hicham Meskher , Raed A. Al-Juboori
{"title":"用于有机和无机分离的 MXene 改性聚氯乙烯膜的合成、表征和性能","authors":"Zainab E. AlHadithy , Adnan A. AbdulRazak , Ahmed M.H. Abdulkadhim Al-Ghaban , Qusay F. Alsalhy , Hicham Meskher , Raed A. Al-Juboori","doi":"10.1016/j.cherd.2024.10.022","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the transformation of polyvinyl chloride (PVC) flat sheet membranes for the first time using MXene, a hydrophilic two-dimensional (2D) nanosheet, to enhance ultrafiltration (UF) performance for wastewater treatment. The loading of MXene in the PVC solution was adjusted from 0 to 0.5 g in order to create modified membranes. The properties and performance of these membranes were thoroughly analyzed using field emission scanning electronmicroscopy (FESEM), contact angle (CA) measurements, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), water permeation flux, Bovine serum albumin (BSA) rejection, and Pb metal ions removal tests. Among the developed membranes, the N2-modified PVC membrane, with 0.4 g of MXene, exhibited the most favorable characteristics, including a contact angle of 65.77° and a porosity of .84.8 %. This membrane achieved the highest clean water permeation flux of 201.3 LMH, along with a 99.9 %, 91.03 % BSA and Pb metal ions rejection rate respectively, and a flux recovery ratio (FRR) of 90.2 %. The incorporation of MXene nanosheets significantly enhanced membrane efficiency compared to neat PVC membranes, demonstrating the promising capabilities of MXene-modified PVC membranes for effective wastewater treatment.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"212 ","pages":"Pages 25-42"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, characterization, and performance of MXene-modified PVC membranes for organic and inorganic separation\",\"authors\":\"Zainab E. AlHadithy , Adnan A. AbdulRazak , Ahmed M.H. Abdulkadhim Al-Ghaban , Qusay F. Alsalhy , Hicham Meskher , Raed A. Al-Juboori\",\"doi\":\"10.1016/j.cherd.2024.10.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the transformation of polyvinyl chloride (PVC) flat sheet membranes for the first time using MXene, a hydrophilic two-dimensional (2D) nanosheet, to enhance ultrafiltration (UF) performance for wastewater treatment. The loading of MXene in the PVC solution was adjusted from 0 to 0.5 g in order to create modified membranes. The properties and performance of these membranes were thoroughly analyzed using field emission scanning electronmicroscopy (FESEM), contact angle (CA) measurements, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), water permeation flux, Bovine serum albumin (BSA) rejection, and Pb metal ions removal tests. Among the developed membranes, the N2-modified PVC membrane, with 0.4 g of MXene, exhibited the most favorable characteristics, including a contact angle of 65.77° and a porosity of .84.8 %. This membrane achieved the highest clean water permeation flux of 201.3 LMH, along with a 99.9 %, 91.03 % BSA and Pb metal ions rejection rate respectively, and a flux recovery ratio (FRR) of 90.2 %. The incorporation of MXene nanosheets significantly enhanced membrane efficiency compared to neat PVC membranes, demonstrating the promising capabilities of MXene-modified PVC membranes for effective wastewater treatment.</div></div>\",\"PeriodicalId\":10019,\"journal\":{\"name\":\"Chemical Engineering Research & Design\",\"volume\":\"212 \",\"pages\":\"Pages 25-42\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Research & Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263876224006075\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224006075","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Synthesis, characterization, and performance of MXene-modified PVC membranes for organic and inorganic separation
This study explores the transformation of polyvinyl chloride (PVC) flat sheet membranes for the first time using MXene, a hydrophilic two-dimensional (2D) nanosheet, to enhance ultrafiltration (UF) performance for wastewater treatment. The loading of MXene in the PVC solution was adjusted from 0 to 0.5 g in order to create modified membranes. The properties and performance of these membranes were thoroughly analyzed using field emission scanning electronmicroscopy (FESEM), contact angle (CA) measurements, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), water permeation flux, Bovine serum albumin (BSA) rejection, and Pb metal ions removal tests. Among the developed membranes, the N2-modified PVC membrane, with 0.4 g of MXene, exhibited the most favorable characteristics, including a contact angle of 65.77° and a porosity of .84.8 %. This membrane achieved the highest clean water permeation flux of 201.3 LMH, along with a 99.9 %, 91.03 % BSA and Pb metal ions rejection rate respectively, and a flux recovery ratio (FRR) of 90.2 %. The incorporation of MXene nanosheets significantly enhanced membrane efficiency compared to neat PVC membranes, demonstrating the promising capabilities of MXene-modified PVC membranes for effective wastewater treatment.
期刊介绍:
ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering.
Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.