探索将超高场磁共振成像神经成像与多模式人工智能整合用于临床诊断的可行性

iRadiology Pub Date : 2024-10-22 DOI:10.1002/ird3.102
Yifan Yuan, Kaitao Chen, Youjia Zhu, Yang Yu, Mintao Hu, Ying-Hua Chu, Yi-Cheng Hsu, Jie Hu, Qi Yue, Mianxin Liu
{"title":"探索将超高场磁共振成像神经成像与多模式人工智能整合用于临床诊断的可行性","authors":"Yifan Yuan,&nbsp;Kaitao Chen,&nbsp;Youjia Zhu,&nbsp;Yang Yu,&nbsp;Mintao Hu,&nbsp;Ying-Hua Chu,&nbsp;Yi-Cheng Hsu,&nbsp;Jie Hu,&nbsp;Qi Yue,&nbsp;Mianxin Liu","doi":"10.1002/ird3.102","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>The integration of 7 Tesla (7T) magnetic resonance imaging (MRI) with advanced multimodal artificial intelligence (AI) models represents a promising frontier in neuroimaging. The superior spatial resolution of 7TMRI provides detailed visualizations of brain structure, which are crucial forunderstanding complex central nervous system diseases and tumors. Concurrently, the application of multimodal AI to medical images enables interactive imaging-based diagnostic conversation.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>In this paper, we systematically investigate the capacity and feasibility of applying the existing advanced multimodal AI model ChatGPT-4V to 7T MRI under the context of brain tumors. First, we test whether ChatGPT-4V has knowledge about 7T MRI, and whether it can differentiate 7T MRI from 3T MRI. In addition, we explore whether ChatGPT-4V can recognize different 7T MRI modalities and whether it can correctly offer diagnosis of tumors based on single or multiple modality 7T MRI.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>ChatGPT-4V exhibited accuracy of 84.4% in 3T-vs-7T differentiation and accuracy of 78.9% in 7T modality recognition. Meanwhile, in a human evaluation with three clinical experts, ChatGPT obtained average scores of 9.27/20 in single modality-based diagnosis and 21.25/25 in multiple modality-based diagnosis. Our study indicates that single-modality diagnosis and the interpretability of diagnostic decisions in clinical practice should be enhanced when ChatGPT-4V is applied to 7T data.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>In general, our analysis suggests that such integration has promise as a tool to improve the workflow of diagnostics in neurology, with a potentially transformative impact in the fields of medical image analysis and patient management.</p>\n </section>\n </div>","PeriodicalId":73508,"journal":{"name":"iRadiology","volume":"2 5","pages":"498-509"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird3.102","citationCount":"0","resultStr":"{\"title\":\"Exploring the feasibility of integrating ultra-high field magnetic resonance imaging neuroimaging with multimodal artificial intelligence for clinical diagnostics\",\"authors\":\"Yifan Yuan,&nbsp;Kaitao Chen,&nbsp;Youjia Zhu,&nbsp;Yang Yu,&nbsp;Mintao Hu,&nbsp;Ying-Hua Chu,&nbsp;Yi-Cheng Hsu,&nbsp;Jie Hu,&nbsp;Qi Yue,&nbsp;Mianxin Liu\",\"doi\":\"10.1002/ird3.102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>The integration of 7 Tesla (7T) magnetic resonance imaging (MRI) with advanced multimodal artificial intelligence (AI) models represents a promising frontier in neuroimaging. The superior spatial resolution of 7TMRI provides detailed visualizations of brain structure, which are crucial forunderstanding complex central nervous system diseases and tumors. Concurrently, the application of multimodal AI to medical images enables interactive imaging-based diagnostic conversation.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>In this paper, we systematically investigate the capacity and feasibility of applying the existing advanced multimodal AI model ChatGPT-4V to 7T MRI under the context of brain tumors. First, we test whether ChatGPT-4V has knowledge about 7T MRI, and whether it can differentiate 7T MRI from 3T MRI. In addition, we explore whether ChatGPT-4V can recognize different 7T MRI modalities and whether it can correctly offer diagnosis of tumors based on single or multiple modality 7T MRI.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>ChatGPT-4V exhibited accuracy of 84.4% in 3T-vs-7T differentiation and accuracy of 78.9% in 7T modality recognition. Meanwhile, in a human evaluation with three clinical experts, ChatGPT obtained average scores of 9.27/20 in single modality-based diagnosis and 21.25/25 in multiple modality-based diagnosis. Our study indicates that single-modality diagnosis and the interpretability of diagnostic decisions in clinical practice should be enhanced when ChatGPT-4V is applied to 7T data.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>In general, our analysis suggests that such integration has promise as a tool to improve the workflow of diagnostics in neurology, with a potentially transformative impact in the fields of medical image analysis and patient management.</p>\\n </section>\\n </div>\",\"PeriodicalId\":73508,\"journal\":{\"name\":\"iRadiology\",\"volume\":\"2 5\",\"pages\":\"498-509\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird3.102\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iRadiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ird3.102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iRadiology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ird3.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景 7特斯拉(7T)磁共振成像(MRI)与先进的多模态人工智能(AI)模型的整合是神经成像领域前景广阔的前沿技术。7TMRI 超高的空间分辨率可提供详细的脑结构可视化图像,这对了解复杂的中枢神经系统疾病和肿瘤至关重要。同时,将多模态人工智能应用于医学图像可实现基于成像的交互式诊断对话。 方法 在本文中,我们系统地研究了将现有先进的多模态人工智能模型 ChatGPT-4V 应用于脑肿瘤背景下的 7T MRI 的能力和可行性。首先,我们测试了 ChatGPT-4V 是否了解 7T 磁共振成像,以及是否能区分 7T 磁共振成像和 3T 磁共振成像。此外,我们还探讨了 ChatGPT-4V 是否能识别不同的 7T 磁共振成像模式,以及是否能根据单模式或多模式 7T 磁共振成像正确提供肿瘤诊断。 结果 ChatGPT-4V 在 3T 与 7T 的区分中表现出 84.4% 的准确率,在 7T 模式识别中表现出 78.9% 的准确率。同时,在三位临床专家的人工评估中,ChatGPT 在基于单一模式的诊断中获得了 9.27/20 的平均分,在基于多种模式的诊断中获得了 21.25/25 的平均分。我们的研究表明,当 ChatGPT-4V 应用于 7T 数据时,临床实践中的单模态诊断和诊断决定的可解释性应得到提高。 结论 总的来说,我们的分析表明,这种集成有望成为改善神经病学诊断工作流程的工具,并对医学图像分析和患者管理领域产生潜在的变革性影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the feasibility of integrating ultra-high field magnetic resonance imaging neuroimaging with multimodal artificial intelligence for clinical diagnostics

Background

The integration of 7 Tesla (7T) magnetic resonance imaging (MRI) with advanced multimodal artificial intelligence (AI) models represents a promising frontier in neuroimaging. The superior spatial resolution of 7TMRI provides detailed visualizations of brain structure, which are crucial forunderstanding complex central nervous system diseases and tumors. Concurrently, the application of multimodal AI to medical images enables interactive imaging-based diagnostic conversation.

Methods

In this paper, we systematically investigate the capacity and feasibility of applying the existing advanced multimodal AI model ChatGPT-4V to 7T MRI under the context of brain tumors. First, we test whether ChatGPT-4V has knowledge about 7T MRI, and whether it can differentiate 7T MRI from 3T MRI. In addition, we explore whether ChatGPT-4V can recognize different 7T MRI modalities and whether it can correctly offer diagnosis of tumors based on single or multiple modality 7T MRI.

Results

ChatGPT-4V exhibited accuracy of 84.4% in 3T-vs-7T differentiation and accuracy of 78.9% in 7T modality recognition. Meanwhile, in a human evaluation with three clinical experts, ChatGPT obtained average scores of 9.27/20 in single modality-based diagnosis and 21.25/25 in multiple modality-based diagnosis. Our study indicates that single-modality diagnosis and the interpretability of diagnostic decisions in clinical practice should be enhanced when ChatGPT-4V is applied to 7T data.

Conclusions

In general, our analysis suggests that such integration has promise as a tool to improve the workflow of diagnostics in neurology, with a potentially transformative impact in the fields of medical image analysis and patient management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information An unusual large mass of sclerosing angiomatoid nodular transformation Exploring the feasibility of integrating ultra-high field magnetic resonance imaging neuroimaging with multimodal artificial intelligence for clinical diagnostics Three-dimensional time of flight magnetic resonance angiography at 5.0T: Visualization of the superior cerebellar artery Ultra-high field magnetic resonance imaging in theranostics of mental disorders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1