Wang Yonglong, Yu Zaijiang, Guo Jiakuan, Du Kang, Ma Denghui, Zhao Aoqi
{"title":"软煤层钻探中钻杆弯曲诱发井眼坍塌的机理及应用","authors":"Wang Yonglong, Yu Zaijiang, Guo Jiakuan, Du Kang, Ma Denghui, Zhao Aoqi","doi":"10.1002/ese3.1921","DOIUrl":null,"url":null,"abstract":"<p>Gas extraction drilling is a necessary measure for managing gas hazards. For soft coal seams where gas extraction drilling holes are prone to collapse, it is believed that drill rod disturbance is the main cause of hole collapse. This study proposes a research approach to reduce wall stress by optimizing the drill rod structure. Through theoretical analysis, numerical simulation, and industrial tests, a stress model for the drill rod inside the hole was established, and a wall stress equation was derived. The effects of various parameters on wall stress were analyzed. The study suggests optimizing the drill rod structure to reduce the disturbance-induced wall stress. SolidWorks was used for drilling stress simulation, and a four-winged concave groove drill rod was developed. After strength verification, comparative industrial tests were conducted. The research results show that as the line density increases, the wall stress of the drilling hole increases. As the length of the suspended section increases, the wall stress initially decreases and then increases. With increasing drilling thrust, wall stress increases linearly, and the growth rate is greater with a larger diameter difference between the drill hole and the drill rod. Numerical simulation results indicate that the critical point maximum stress at the hole entrance, the critical point maximum stress at the hole bottom, and the average stress at the bottom section of the four-winged concave groove drill rod with a concavity of 5 are significantly reduced compared to those of circular and grooved drill rods. Industrial test results show that using the four-winged concave groove drill rod significantly reduces the extent of hole collapse. This study provides a reference for addressing the issue of hole collapse in gas extraction drilling for soft coal seams.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 10","pages":"4763-4772"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1921","citationCount":"0","resultStr":"{\"title\":\"Mechanism and application of drill pipe bending induced borehole collapse in soft coal seam drilling\",\"authors\":\"Wang Yonglong, Yu Zaijiang, Guo Jiakuan, Du Kang, Ma Denghui, Zhao Aoqi\",\"doi\":\"10.1002/ese3.1921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gas extraction drilling is a necessary measure for managing gas hazards. For soft coal seams where gas extraction drilling holes are prone to collapse, it is believed that drill rod disturbance is the main cause of hole collapse. This study proposes a research approach to reduce wall stress by optimizing the drill rod structure. Through theoretical analysis, numerical simulation, and industrial tests, a stress model for the drill rod inside the hole was established, and a wall stress equation was derived. The effects of various parameters on wall stress were analyzed. The study suggests optimizing the drill rod structure to reduce the disturbance-induced wall stress. SolidWorks was used for drilling stress simulation, and a four-winged concave groove drill rod was developed. After strength verification, comparative industrial tests were conducted. The research results show that as the line density increases, the wall stress of the drilling hole increases. As the length of the suspended section increases, the wall stress initially decreases and then increases. With increasing drilling thrust, wall stress increases linearly, and the growth rate is greater with a larger diameter difference between the drill hole and the drill rod. Numerical simulation results indicate that the critical point maximum stress at the hole entrance, the critical point maximum stress at the hole bottom, and the average stress at the bottom section of the four-winged concave groove drill rod with a concavity of 5 are significantly reduced compared to those of circular and grooved drill rods. Industrial test results show that using the four-winged concave groove drill rod significantly reduces the extent of hole collapse. This study provides a reference for addressing the issue of hole collapse in gas extraction drilling for soft coal seams.</p>\",\"PeriodicalId\":11673,\"journal\":{\"name\":\"Energy Science & Engineering\",\"volume\":\"12 10\",\"pages\":\"4763-4772\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1921\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1921\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1921","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Mechanism and application of drill pipe bending induced borehole collapse in soft coal seam drilling
Gas extraction drilling is a necessary measure for managing gas hazards. For soft coal seams where gas extraction drilling holes are prone to collapse, it is believed that drill rod disturbance is the main cause of hole collapse. This study proposes a research approach to reduce wall stress by optimizing the drill rod structure. Through theoretical analysis, numerical simulation, and industrial tests, a stress model for the drill rod inside the hole was established, and a wall stress equation was derived. The effects of various parameters on wall stress were analyzed. The study suggests optimizing the drill rod structure to reduce the disturbance-induced wall stress. SolidWorks was used for drilling stress simulation, and a four-winged concave groove drill rod was developed. After strength verification, comparative industrial tests were conducted. The research results show that as the line density increases, the wall stress of the drilling hole increases. As the length of the suspended section increases, the wall stress initially decreases and then increases. With increasing drilling thrust, wall stress increases linearly, and the growth rate is greater with a larger diameter difference between the drill hole and the drill rod. Numerical simulation results indicate that the critical point maximum stress at the hole entrance, the critical point maximum stress at the hole bottom, and the average stress at the bottom section of the four-winged concave groove drill rod with a concavity of 5 are significantly reduced compared to those of circular and grooved drill rods. Industrial test results show that using the four-winged concave groove drill rod significantly reduces the extent of hole collapse. This study provides a reference for addressing the issue of hole collapse in gas extraction drilling for soft coal seams.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.