识别和减少特斯拉涡轮机的能量损失:CFD 优化研究

IF 3.5 3区 工程技术 Q3 ENERGY & FUELS Energy Science & Engineering Pub Date : 2024-09-19 DOI:10.1002/ese3.1863
Yovany Galindo, José Núñez, Alberto Beltrán
{"title":"识别和减少特斯拉涡轮机的能量损失:CFD 优化研究","authors":"Yovany Galindo,&nbsp;José Núñez,&nbsp;Alberto Beltrán","doi":"10.1002/ese3.1863","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the flow dynamics and energy losses of Tesla turbines using Computational Fluid Dynamics with OpenFOAM. Our goal is to identify the main sources of energy loss. Four main sources of energy loss were identified. The most significant loss occurred during the conversion of pressure energy to kinetic energy, estimated to range from <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>88</mn>\n \n <mo>%</mo>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:20500505:media:ese31863:ese31863-math-0001\" wiley:location=\"equation/ese31863-math-0001.png\" display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;88&lt;/mn&gt;&lt;mo&gt;%&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>64</mn>\n \n <mo>%</mo>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:20500505:media:ese31863:ese31863-math-0002\" wiley:location=\"equation/ese31863-math-0002.png\" display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;64&lt;/mn&gt;&lt;mo&gt;%&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> of the total energy. Energy losses due to leaks between the rotor and the casing were also quantified, ranging from <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>4.97</mn>\n \n <mo>%</mo>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:20500505:media:ese31863:ese31863-math-0003\" wiley:location=\"equation/ese31863-math-0003.png\" display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;4.97&lt;/mn&gt;&lt;mo&gt;%&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>7.95</mn>\n \n <mo>%</mo>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:20500505:media:ese31863:ese31863-math-0004\" wiley:location=\"equation/ese31863-math-0004.png\" display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;7.95&lt;/mn&gt;&lt;mo&gt;%&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> of the kinetic energy at peak efficiency points. Design modifications, such as incorporating a nozzle at the entrance of the turbine, can improve efficiency. These findings highlight specific areas for efficiency improvement, offering opportunities for improved turbine design and integration into energy-generation systems.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 10","pages":"4090-4100"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1863","citationCount":"0","resultStr":"{\"title\":\"Identifying and mitigating energy losses in Tesla turbines: A study on CFD optimization\",\"authors\":\"Yovany Galindo,&nbsp;José Núñez,&nbsp;Alberto Beltrán\",\"doi\":\"10.1002/ese3.1863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the flow dynamics and energy losses of Tesla turbines using Computational Fluid Dynamics with OpenFOAM. Our goal is to identify the main sources of energy loss. Four main sources of energy loss were identified. The most significant loss occurred during the conversion of pressure energy to kinetic energy, estimated to range from <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>88</mn>\\n \\n <mo>%</mo>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math altimg=\\\"urn:x-wiley:20500505:media:ese31863:ese31863-math-0001\\\" wiley:location=\\\"equation/ese31863-math-0001.png\\\" display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;88&lt;/mn&gt;&lt;mo&gt;%&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> to <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>64</mn>\\n \\n <mo>%</mo>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math altimg=\\\"urn:x-wiley:20500505:media:ese31863:ese31863-math-0002\\\" wiley:location=\\\"equation/ese31863-math-0002.png\\\" display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;64&lt;/mn&gt;&lt;mo&gt;%&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> of the total energy. Energy losses due to leaks between the rotor and the casing were also quantified, ranging from <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>4.97</mn>\\n \\n <mo>%</mo>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math altimg=\\\"urn:x-wiley:20500505:media:ese31863:ese31863-math-0003\\\" wiley:location=\\\"equation/ese31863-math-0003.png\\\" display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;4.97&lt;/mn&gt;&lt;mo&gt;%&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> to <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>7.95</mn>\\n \\n <mo>%</mo>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math altimg=\\\"urn:x-wiley:20500505:media:ese31863:ese31863-math-0004\\\" wiley:location=\\\"equation/ese31863-math-0004.png\\\" display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;7.95&lt;/mn&gt;&lt;mo&gt;%&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> of the kinetic energy at peak efficiency points. Design modifications, such as incorporating a nozzle at the entrance of the turbine, can improve efficiency. These findings highlight specific areas for efficiency improvement, offering opportunities for improved turbine design and integration into energy-generation systems.</p>\",\"PeriodicalId\":11673,\"journal\":{\"name\":\"Energy Science & Engineering\",\"volume\":\"12 10\",\"pages\":\"4090-4100\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1863\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1863\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1863","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用 OpenFOAM 计算流体力学研究了特斯拉涡轮机的流动动力学和能量损失。我们的目标是确定能量损失的主要来源。研究确定了能量损失的四个主要来源。最主要的损失发生在压力能转换为动能的过程中,估计损失范围为 88 % <math altimg="urn:x-wiley:20500505:media:ese31863:ese31863-math-0001" wiley:location="equation/ese31863-math-0001.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>88</mn><mo>%</mo></mrow></mrow></math> to 64 % <math altimg="urn:x-wiley:20500505:media:ese31863:ese31863-math-0002" wiley:location="equation/ese31863-math-0002.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>64</mn><mo>%</mo></mrow></mrow></math> 占总能量的比例。转子和机壳之间的泄漏造成的能量损失也被量化,范围从 4.97 % <math altimg="urn:x-wiley:20500505:media:ese31863:ese31863-math-0003" wiley:location="equation/ese31863-math-0003.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>4.97</mn><mo>%</mo></mrow></mrow></math> to 7.95 % <math altimg="urn:x-wiley:20500505:media:ese31863:ese31863-math-0004" wiley:location="equation/ese31863-math-0004.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>7.95</mn><mo>%</mo></mrow></mrow></math> 峰值效率点的动能。修改设计,例如在涡轮机入口处安装喷嘴,可以提高效率。这些发现突出了提高效率的具体领域,为改进涡轮机设计和将其集成到能源发电系统中提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying and mitigating energy losses in Tesla turbines: A study on CFD optimization

This study investigates the flow dynamics and energy losses of Tesla turbines using Computational Fluid Dynamics with OpenFOAM. Our goal is to identify the main sources of energy loss. Four main sources of energy loss were identified. The most significant loss occurred during the conversion of pressure energy to kinetic energy, estimated to range from 88 % <math altimg="urn:x-wiley:20500505:media:ese31863:ese31863-math-0001" wiley:location="equation/ese31863-math-0001.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>88</mn><mo>%</mo></mrow></mrow></math> to 64 % <math altimg="urn:x-wiley:20500505:media:ese31863:ese31863-math-0002" wiley:location="equation/ese31863-math-0002.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>64</mn><mo>%</mo></mrow></mrow></math> of the total energy. Energy losses due to leaks between the rotor and the casing were also quantified, ranging from 4.97 % <math altimg="urn:x-wiley:20500505:media:ese31863:ese31863-math-0003" wiley:location="equation/ese31863-math-0003.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>4.97</mn><mo>%</mo></mrow></mrow></math> to 7.95 % <math altimg="urn:x-wiley:20500505:media:ese31863:ese31863-math-0004" wiley:location="equation/ese31863-math-0004.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>7.95</mn><mo>%</mo></mrow></mrow></math> of the kinetic energy at peak efficiency points. Design modifications, such as incorporating a nozzle at the entrance of the turbine, can improve efficiency. These findings highlight specific areas for efficiency improvement, offering opportunities for improved turbine design and integration into energy-generation systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Science & Engineering
Energy Science & Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
6.80
自引率
7.90%
发文量
298
审稿时长
11 weeks
期刊介绍: Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.
期刊最新文献
Issue Information Floor Heave Mechanism and Control Technique of Water-Rich Soft-Rock Roadway in Thick Coal Seam An Ultra-Short-Term Multi-Step Prediction Model for Wind Power Based on Sparrow Search Algorithm, Variational Mode Decomposition, Gated Recurrent Unit, and Support Vector Regression Experimental Study on Mechanical Properties of Artificial Cores Saturated With Ice: An Analogical Simulation to Natural Gas Hydrate Bearing Sediments Integrated Method of Future Capacity and RUL Prediction for Lithium-Ion Batteries Based on CEEMD-Transformer-LSTM Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1