{"title":"MH-HMR:通过多假设学习从单目图像中恢复人体网状结构","authors":"Haibiao Xuan, Jinsong Zhang, Yu-Kun Lai, Kun Li","doi":"10.1049/cit2.12337","DOIUrl":null,"url":null,"abstract":"<p>Recovering 3D human meshes from monocular images is an inherently ill-posed and challenging task due to depth ambiguity, joint occlusion, and truncation. However, most existing approaches do not model such uncertainties, typically yielding a single reconstruction for one input. In contrast, the ambiguity of the reconstruction is embraced and the problem is considered as an inverse problem for which multiple feasible solutions exist. To address these issues, the authors propose a multi-hypothesis approach, multi-hypothesis human mesh recovery (MH-HMR), to efficiently model the multi-hypothesis representation and build strong relationships among the hypothetical features. Specifically, the task is decomposed into three stages: (1) generating a reasonable set of initial recovery results (i.e., multiple hypotheses) given a single colour image; (2) modelling intra-hypothesis refinement to enhance every single-hypothesis feature; and (3) establishing inter-hypothesis communication and regressing the final human meshes. Meanwhile, the authors take further advantage of multiple hypotheses and the recovery process to achieve human mesh recovery from multiple uncalibrated views. Compared with state-of-the-art methods, the MH-HMR approach achieves superior performance and recovers more accurate human meshes on challenging benchmark datasets, such as Human3.6M and 3DPW, while demonstrating the effectiveness across a variety of settings. The code will be publicly available at https://cic.tju.edu.cn/faculty/likun/projects/MH-HMR.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"9 5","pages":"1263-1274"},"PeriodicalIF":8.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12337","citationCount":"0","resultStr":"{\"title\":\"MH-HMR: Human mesh recovery from monocular images via multi-hypothesis learning\",\"authors\":\"Haibiao Xuan, Jinsong Zhang, Yu-Kun Lai, Kun Li\",\"doi\":\"10.1049/cit2.12337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recovering 3D human meshes from monocular images is an inherently ill-posed and challenging task due to depth ambiguity, joint occlusion, and truncation. However, most existing approaches do not model such uncertainties, typically yielding a single reconstruction for one input. In contrast, the ambiguity of the reconstruction is embraced and the problem is considered as an inverse problem for which multiple feasible solutions exist. To address these issues, the authors propose a multi-hypothesis approach, multi-hypothesis human mesh recovery (MH-HMR), to efficiently model the multi-hypothesis representation and build strong relationships among the hypothetical features. Specifically, the task is decomposed into three stages: (1) generating a reasonable set of initial recovery results (i.e., multiple hypotheses) given a single colour image; (2) modelling intra-hypothesis refinement to enhance every single-hypothesis feature; and (3) establishing inter-hypothesis communication and regressing the final human meshes. Meanwhile, the authors take further advantage of multiple hypotheses and the recovery process to achieve human mesh recovery from multiple uncalibrated views. Compared with state-of-the-art methods, the MH-HMR approach achieves superior performance and recovers more accurate human meshes on challenging benchmark datasets, such as Human3.6M and 3DPW, while demonstrating the effectiveness across a variety of settings. The code will be publicly available at https://cic.tju.edu.cn/faculty/likun/projects/MH-HMR.</p>\",\"PeriodicalId\":46211,\"journal\":{\"name\":\"CAAI Transactions on Intelligence Technology\",\"volume\":\"9 5\",\"pages\":\"1263-1274\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12337\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI Transactions on Intelligence Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12337\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12337","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
MH-HMR: Human mesh recovery from monocular images via multi-hypothesis learning
Recovering 3D human meshes from monocular images is an inherently ill-posed and challenging task due to depth ambiguity, joint occlusion, and truncation. However, most existing approaches do not model such uncertainties, typically yielding a single reconstruction for one input. In contrast, the ambiguity of the reconstruction is embraced and the problem is considered as an inverse problem for which multiple feasible solutions exist. To address these issues, the authors propose a multi-hypothesis approach, multi-hypothesis human mesh recovery (MH-HMR), to efficiently model the multi-hypothesis representation and build strong relationships among the hypothetical features. Specifically, the task is decomposed into three stages: (1) generating a reasonable set of initial recovery results (i.e., multiple hypotheses) given a single colour image; (2) modelling intra-hypothesis refinement to enhance every single-hypothesis feature; and (3) establishing inter-hypothesis communication and regressing the final human meshes. Meanwhile, the authors take further advantage of multiple hypotheses and the recovery process to achieve human mesh recovery from multiple uncalibrated views. Compared with state-of-the-art methods, the MH-HMR approach achieves superior performance and recovers more accurate human meshes on challenging benchmark datasets, such as Human3.6M and 3DPW, while demonstrating the effectiveness across a variety of settings. The code will be publicly available at https://cic.tju.edu.cn/faculty/likun/projects/MH-HMR.
期刊介绍:
CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.