Suwei Xu, Yuhei Nakayama, Maia G. Rothman, Andrew J. Margenot
{"title":"随深度变化的土壤磷变化与 145 年磷平衡无关","authors":"Suwei Xu, Yuhei Nakayama, Maia G. Rothman, Andrew J. Margenot","doi":"10.1111/ejss.70006","DOIUrl":null,"url":null,"abstract":"<p>Agricultural management practices can profoundly influence soil phosphorus (P), with effects accumulating over time. To test the overarching hypothesis that soil P pools estimated by sequential fractionation would be altered by long-term agricultural practices, we used an experiment established in 1876 in the north-central US to quantify 145-year impacts of crop rotation (continuous maize [<i>Zea mays</i> L.], maize-soybean [<i>Glycine max</i> L. Merr.] and maize-oat [<i>Avena sativa</i> L.]-alfalfa [<i>Medicago sativa</i> L.]) and 117-year impacts of fertilization (unfertilized and fertilized) with rock phosphate, manure or synthetic fertilizer on soil P fractions at 15 cm intervals across 0–90 cm depth. Fertilization impacts on soil P were mostly limited to the surface (0–30 cm) depth, but extended to 90 cm depth under diverse rotations. Under fertilization, soil total P concentration increased by 51% at 0-30 cm while concomitantly decreasing by 30% at 60–90 cm compared to no fertilization, indicating that vertically stratified surface soil P accumulation and subsoil P depletion can co-occur even under positive P balances. Positive P balances (1222–1494 kg/ha) induced by fertilization enriched inorganic P (P<sub>i</sub>) (+39% to 358%) and labile organic P (P<sub>o</sub>) fractions (+11%) while depleting non-labile P<sub>o</sub> fractions (−31%), with depletion increasing with the degree of crop diversification. Fertilization had minor impacts on P fractions beyond 30 cm depth, except for acid extractable P<sub>i</sub> (HCl-P<sub>i</sub>) depletion under continuous maize and maize-soybean rotations (−16% to −78%) and accumulation under maize-oat-alfalfa rotation (+41% to +84%) at 60–90 cm. In contrast, without fertilization, diversifying maize rotations with oat and alfalfa decreased HCl-P<sub>i</sub> and residual P (−21% to −57%) but increased non-labile P<sub>o</sub> fractions (+54%), suggesting potential mining of non-labile P<sub>i</sub> pools by deep-rooted legumes under nutrient limitation. The 1–2 orders of magnitude greater changes in stocks of P fractions than stocks of total P emphasize the importance of distinguishing P pools even with operational fractionation to fully capture changes in P cycling beyond total P stocks. Our study revealed that a positive P balance under 117 years of fertilization (i) enriched P<sub>i</sub> and labile P<sub>o</sub> pools but (ii) depleted non-labile P<sub>o</sub> pools, (iii) largely at 0–30 cm, and (iv) non-labile P<sub>o</sub> depletion increased with crop diversification under 145-year rotation treatments.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 6","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.70006","citationCount":"0","resultStr":"{\"title\":\"Depth-dependent soil phosphorus alteration is independent of 145-year phosphorus balances\",\"authors\":\"Suwei Xu, Yuhei Nakayama, Maia G. Rothman, Andrew J. Margenot\",\"doi\":\"10.1111/ejss.70006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Agricultural management practices can profoundly influence soil phosphorus (P), with effects accumulating over time. To test the overarching hypothesis that soil P pools estimated by sequential fractionation would be altered by long-term agricultural practices, we used an experiment established in 1876 in the north-central US to quantify 145-year impacts of crop rotation (continuous maize [<i>Zea mays</i> L.], maize-soybean [<i>Glycine max</i> L. Merr.] and maize-oat [<i>Avena sativa</i> L.]-alfalfa [<i>Medicago sativa</i> L.]) and 117-year impacts of fertilization (unfertilized and fertilized) with rock phosphate, manure or synthetic fertilizer on soil P fractions at 15 cm intervals across 0–90 cm depth. Fertilization impacts on soil P were mostly limited to the surface (0–30 cm) depth, but extended to 90 cm depth under diverse rotations. Under fertilization, soil total P concentration increased by 51% at 0-30 cm while concomitantly decreasing by 30% at 60–90 cm compared to no fertilization, indicating that vertically stratified surface soil P accumulation and subsoil P depletion can co-occur even under positive P balances. Positive P balances (1222–1494 kg/ha) induced by fertilization enriched inorganic P (P<sub>i</sub>) (+39% to 358%) and labile organic P (P<sub>o</sub>) fractions (+11%) while depleting non-labile P<sub>o</sub> fractions (−31%), with depletion increasing with the degree of crop diversification. Fertilization had minor impacts on P fractions beyond 30 cm depth, except for acid extractable P<sub>i</sub> (HCl-P<sub>i</sub>) depletion under continuous maize and maize-soybean rotations (−16% to −78%) and accumulation under maize-oat-alfalfa rotation (+41% to +84%) at 60–90 cm. In contrast, without fertilization, diversifying maize rotations with oat and alfalfa decreased HCl-P<sub>i</sub> and residual P (−21% to −57%) but increased non-labile P<sub>o</sub> fractions (+54%), suggesting potential mining of non-labile P<sub>i</sub> pools by deep-rooted legumes under nutrient limitation. The 1–2 orders of magnitude greater changes in stocks of P fractions than stocks of total P emphasize the importance of distinguishing P pools even with operational fractionation to fully capture changes in P cycling beyond total P stocks. Our study revealed that a positive P balance under 117 years of fertilization (i) enriched P<sub>i</sub> and labile P<sub>o</sub> pools but (ii) depleted non-labile P<sub>o</sub> pools, (iii) largely at 0–30 cm, and (iv) non-labile P<sub>o</sub> depletion increased with crop diversification under 145-year rotation treatments.</p>\",\"PeriodicalId\":12043,\"journal\":{\"name\":\"European Journal of Soil Science\",\"volume\":\"75 6\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.70006\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Soil Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ejss.70006\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejss.70006","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
农业管理方法会对土壤中的磷(P)产生深远的影响,这种影响会随着时间的推移而不断累积。为了验证通过顺序分馏法估算的土壤磷库会因长期农业实践而改变这一重要假设,我们使用了 1876 年在美国中北部进行的一项实验,以量化轮作(连作玉米[Zea mays L. ]、玉米-大豆[Glybine max L. Merr. ]和玉米-山羊[Avena mays L. ])145 年的影响。玉米-大豆[Glycine max L. Merr.]和玉米-山羊[Avena sativa L.]-紫花苜蓿[Medicago sativa L.])145 年的轮作影响,以及用磷矿石、粪肥或合成肥料施肥(未施肥和施肥)117 年对 0-90 厘米深度每隔 15 厘米土壤 P 分量的影响。施肥对土壤钾的影响主要局限于表层(0-30 厘米),但在不同的轮作条件下,施肥对土壤钾的影响扩展到 90 厘米深。与不施肥相比,施肥后 0-30 厘米处的土壤总磷浓度增加了 51%,而 60-90 厘米处的土壤总磷浓度同时减少了 30%,这表明即使在正磷平衡的情况下,垂直分层的表层土壤磷积累和底层土壤磷耗竭也会同时发生。施肥引起的正钾平衡(1222-1494 千克/公顷)富集了无机钾(Pi)(+39%-358%)和可溶性有机钾(Po)组分(+11%),同时消耗了非可溶性有机钾组分(-31%),消耗量随作物多样化程度而增加。施肥对 30 厘米深度以外的钾组分影响较小,但在连续玉米和玉米-大豆轮作下,酸提取钾(HCl-Pi)消耗(-16% 至 -78%),而在玉米-山羊-紫花苜蓿轮作下,钾在 60-90 厘米处积累(+41% 至 +84%)。相比之下,在不施肥的情况下,玉米与燕麦和苜蓿的多样化轮作减少了 HCl-Pi 和残余 P(-21% 至 -57%),但增加了非可吸收的 Po 部分(+54%),这表明在养分限制条件下,深根豆科植物可能会开采非可吸收的 Pi 池。钾馏分储量的变化比总钾储量的变化大 1-2 个数量级,这强调了即使进行操作分馏也要区分钾池的重要性,以全面捕捉总钾量以外的钾循环变化。我们的研究表明,在 117 年的施肥条件下,正 P 平衡(i)富集了 Pi 和可溶性 Po 池,但(ii)消耗了非可溶性 Po 池;(iii)主要在 0-30 厘米处;(iv)在 145 年的轮作处理下,非可溶性 Po 的消耗随着作物多样化而增加。
Depth-dependent soil phosphorus alteration is independent of 145-year phosphorus balances
Agricultural management practices can profoundly influence soil phosphorus (P), with effects accumulating over time. To test the overarching hypothesis that soil P pools estimated by sequential fractionation would be altered by long-term agricultural practices, we used an experiment established in 1876 in the north-central US to quantify 145-year impacts of crop rotation (continuous maize [Zea mays L.], maize-soybean [Glycine max L. Merr.] and maize-oat [Avena sativa L.]-alfalfa [Medicago sativa L.]) and 117-year impacts of fertilization (unfertilized and fertilized) with rock phosphate, manure or synthetic fertilizer on soil P fractions at 15 cm intervals across 0–90 cm depth. Fertilization impacts on soil P were mostly limited to the surface (0–30 cm) depth, but extended to 90 cm depth under diverse rotations. Under fertilization, soil total P concentration increased by 51% at 0-30 cm while concomitantly decreasing by 30% at 60–90 cm compared to no fertilization, indicating that vertically stratified surface soil P accumulation and subsoil P depletion can co-occur even under positive P balances. Positive P balances (1222–1494 kg/ha) induced by fertilization enriched inorganic P (Pi) (+39% to 358%) and labile organic P (Po) fractions (+11%) while depleting non-labile Po fractions (−31%), with depletion increasing with the degree of crop diversification. Fertilization had minor impacts on P fractions beyond 30 cm depth, except for acid extractable Pi (HCl-Pi) depletion under continuous maize and maize-soybean rotations (−16% to −78%) and accumulation under maize-oat-alfalfa rotation (+41% to +84%) at 60–90 cm. In contrast, without fertilization, diversifying maize rotations with oat and alfalfa decreased HCl-Pi and residual P (−21% to −57%) but increased non-labile Po fractions (+54%), suggesting potential mining of non-labile Pi pools by deep-rooted legumes under nutrient limitation. The 1–2 orders of magnitude greater changes in stocks of P fractions than stocks of total P emphasize the importance of distinguishing P pools even with operational fractionation to fully capture changes in P cycling beyond total P stocks. Our study revealed that a positive P balance under 117 years of fertilization (i) enriched Pi and labile Po pools but (ii) depleted non-labile Po pools, (iii) largely at 0–30 cm, and (iv) non-labile Po depletion increased with crop diversification under 145-year rotation treatments.
期刊介绍:
The EJSS is an international journal that publishes outstanding papers in soil science that advance the theoretical and mechanistic understanding of physical, chemical and biological processes and their interactions in soils acting from molecular to continental scales in natural and managed environments.