Shengyan Liu, Jiangwei Yang, Ning Zhang, Huaijun Si
{"title":"非编码 RNA 的全基因组分析揭示了新型 miR319c 在马铃薯块茎休眠解除过程中的作用","authors":"Shengyan Liu, Jiangwei Yang, Ning Zhang, Huaijun Si","doi":"10.1093/hr/uhae303","DOIUrl":null,"url":null,"abstract":"Tuber dormancy and sprouting are significant for potato cultivation, storage, and processing. Although the substantial role of miRNAs in some biological processes has been recognized, the critical role of miRNA in breaking potato tuber dormancy is not well understood to date. In this investigation, we expand research on miRNA-mediated gene regulation in tuber dormancy release. In this work, 204 known and 192 novel miRNAs were identified. 136 differentially expressed miRNAs (DE-miRNAs) were also screened out, of which 56 DE-miRNAs were regulated by temperature during tuber dormancy release. Additionally, degradome sequencing revealed that 821 target genes for 202 miRNAs were discovered. Among them, 63 target genes and 48 miRNAs were predicted to be involved in plant hormone signaling pathways. This study used degradome sequencing, tobacco co-transformation system, and GUS staining technology to confirm that stu-miR319c can target StTCP26 and StTCP27 and effectively suppress their expression. The transgenic approach exhibited that stu-miR319c overexpressed tubers sprouted in advance, while silent expression of stu-miR319c showed delayed sprouting. Treatment of wild-type tubers with exogenous MeJA revealed that 1 mg/L MeJA significantly broke dormancy and enhanced potato sprouting ability. Furthermore, transgenic tubers revealed variance in JA content and relative expression of genes associated with JA synthesis pathway, including StAOC, StLOX2, and StLOX4, suggesting that the miR319c may participate in the JA pathway to regulate tuber dormancy release. In summary, our research offers evidence that miRNA regulates potato dormancy release and supports the idea that stu-miR319c is a unique epigenetic regulator for dormancy-sprouting transition in potatoes.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"240 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-wide analysis of non-coding RNA reveals the role of a novel miR319c for tuber dormancy release process in potato\",\"authors\":\"Shengyan Liu, Jiangwei Yang, Ning Zhang, Huaijun Si\",\"doi\":\"10.1093/hr/uhae303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tuber dormancy and sprouting are significant for potato cultivation, storage, and processing. Although the substantial role of miRNAs in some biological processes has been recognized, the critical role of miRNA in breaking potato tuber dormancy is not well understood to date. In this investigation, we expand research on miRNA-mediated gene regulation in tuber dormancy release. In this work, 204 known and 192 novel miRNAs were identified. 136 differentially expressed miRNAs (DE-miRNAs) were also screened out, of which 56 DE-miRNAs were regulated by temperature during tuber dormancy release. Additionally, degradome sequencing revealed that 821 target genes for 202 miRNAs were discovered. Among them, 63 target genes and 48 miRNAs were predicted to be involved in plant hormone signaling pathways. This study used degradome sequencing, tobacco co-transformation system, and GUS staining technology to confirm that stu-miR319c can target StTCP26 and StTCP27 and effectively suppress their expression. The transgenic approach exhibited that stu-miR319c overexpressed tubers sprouted in advance, while silent expression of stu-miR319c showed delayed sprouting. Treatment of wild-type tubers with exogenous MeJA revealed that 1 mg/L MeJA significantly broke dormancy and enhanced potato sprouting ability. Furthermore, transgenic tubers revealed variance in JA content and relative expression of genes associated with JA synthesis pathway, including StAOC, StLOX2, and StLOX4, suggesting that the miR319c may participate in the JA pathway to regulate tuber dormancy release. In summary, our research offers evidence that miRNA regulates potato dormancy release and supports the idea that stu-miR319c is a unique epigenetic regulator for dormancy-sprouting transition in potatoes.\",\"PeriodicalId\":13179,\"journal\":{\"name\":\"Horticulture Research\",\"volume\":\"240 1\",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulture Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/hr/uhae303\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae303","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Genome-wide analysis of non-coding RNA reveals the role of a novel miR319c for tuber dormancy release process in potato
Tuber dormancy and sprouting are significant for potato cultivation, storage, and processing. Although the substantial role of miRNAs in some biological processes has been recognized, the critical role of miRNA in breaking potato tuber dormancy is not well understood to date. In this investigation, we expand research on miRNA-mediated gene regulation in tuber dormancy release. In this work, 204 known and 192 novel miRNAs were identified. 136 differentially expressed miRNAs (DE-miRNAs) were also screened out, of which 56 DE-miRNAs were regulated by temperature during tuber dormancy release. Additionally, degradome sequencing revealed that 821 target genes for 202 miRNAs were discovered. Among them, 63 target genes and 48 miRNAs were predicted to be involved in plant hormone signaling pathways. This study used degradome sequencing, tobacco co-transformation system, and GUS staining technology to confirm that stu-miR319c can target StTCP26 and StTCP27 and effectively suppress their expression. The transgenic approach exhibited that stu-miR319c overexpressed tubers sprouted in advance, while silent expression of stu-miR319c showed delayed sprouting. Treatment of wild-type tubers with exogenous MeJA revealed that 1 mg/L MeJA significantly broke dormancy and enhanced potato sprouting ability. Furthermore, transgenic tubers revealed variance in JA content and relative expression of genes associated with JA synthesis pathway, including StAOC, StLOX2, and StLOX4, suggesting that the miR319c may participate in the JA pathway to regulate tuber dormancy release. In summary, our research offers evidence that miRNA regulates potato dormancy release and supports the idea that stu-miR319c is a unique epigenetic regulator for dormancy-sprouting transition in potatoes.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.