干细胞归巢生物仿生水凝胶通过成骨和血管生成耦合促进骨质疏松性骨缺损的修复

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2024-11-01 DOI:10.1126/sciadv.adq6700
Fei-Long Wei, Yuan Zhai, Tian-Fu Wang, Jing-Wei Zhao, Chao-Li Wang, Zhen Tang, Kuo Shen, Hao Wu, Rui Zheng, Ming-Rui Du, Wei Heng, Xiao-Xiang Li, Xiao-Dong Yan, Quan-You Gao, Zheng Guo, Ji-Xian Qian, Cheng-Pei Zhou
{"title":"干细胞归巢生物仿生水凝胶通过成骨和血管生成耦合促进骨质疏松性骨缺损的修复","authors":"Fei-Long Wei,&nbsp;Yuan Zhai,&nbsp;Tian-Fu Wang,&nbsp;Jing-Wei Zhao,&nbsp;Chao-Li Wang,&nbsp;Zhen Tang,&nbsp;Kuo Shen,&nbsp;Hao Wu,&nbsp;Rui Zheng,&nbsp;Ming-Rui Du,&nbsp;Wei Heng,&nbsp;Xiao-Xiang Li,&nbsp;Xiao-Dong Yan,&nbsp;Quan-You Gao,&nbsp;Zheng Guo,&nbsp;Ji-Xian Qian,&nbsp;Cheng-Pei Zhou","doi":"10.1126/sciadv.adq6700","DOIUrl":null,"url":null,"abstract":"<div >Osteoporotic bone defects refer to the disruption of bone structural integrity in patients with osteoporosis and pose a substantial challenge to orthopedic surgeons. In this study, we developed a biomimetic hydrogel to improve the osteogenic microenvironment and promote stem cell homing. This hydrogel served as a container for S-nitrosoglutathione and Ca<sup>2+</sup>, promoting the release of bioactive nitric oxide (NO) from bone marrow mesenchymal stem cells (BMSCs) and human vascular endothelial cells and activating the NO/cyclic guanosine monophosphate signaling pathway. These changes promote osteogenic and angiogenic couplings. The hydrogel simultaneously recruited BMSCs by conjugating the stem cell homing peptide SKPPGTSS. Using a rat distal femoral defect model, it was demonstrated that this hydrogel can effectively increase the formation of bone tissue and new blood vessels and has immune-regulating functions. We envision that this hydrogel may be a minimally invasive yet highly effective strategy for expediting the healing of osteoporotic bone defects.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adq6700","citationCount":"0","resultStr":"{\"title\":\"Stem cell–homing biomimetic hydrogel promotes the repair of osteoporotic bone defects through osteogenic and angiogenic coupling\",\"authors\":\"Fei-Long Wei,&nbsp;Yuan Zhai,&nbsp;Tian-Fu Wang,&nbsp;Jing-Wei Zhao,&nbsp;Chao-Li Wang,&nbsp;Zhen Tang,&nbsp;Kuo Shen,&nbsp;Hao Wu,&nbsp;Rui Zheng,&nbsp;Ming-Rui Du,&nbsp;Wei Heng,&nbsp;Xiao-Xiang Li,&nbsp;Xiao-Dong Yan,&nbsp;Quan-You Gao,&nbsp;Zheng Guo,&nbsp;Ji-Xian Qian,&nbsp;Cheng-Pei Zhou\",\"doi\":\"10.1126/sciadv.adq6700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Osteoporotic bone defects refer to the disruption of bone structural integrity in patients with osteoporosis and pose a substantial challenge to orthopedic surgeons. In this study, we developed a biomimetic hydrogel to improve the osteogenic microenvironment and promote stem cell homing. This hydrogel served as a container for S-nitrosoglutathione and Ca<sup>2+</sup>, promoting the release of bioactive nitric oxide (NO) from bone marrow mesenchymal stem cells (BMSCs) and human vascular endothelial cells and activating the NO/cyclic guanosine monophosphate signaling pathway. These changes promote osteogenic and angiogenic couplings. The hydrogel simultaneously recruited BMSCs by conjugating the stem cell homing peptide SKPPGTSS. Using a rat distal femoral defect model, it was demonstrated that this hydrogel can effectively increase the formation of bone tissue and new blood vessels and has immune-regulating functions. We envision that this hydrogel may be a minimally invasive yet highly effective strategy for expediting the healing of osteoporotic bone defects.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adq6700\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adq6700\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adq6700","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

骨质疏松症骨缺损是指骨质疏松症患者的骨结构完整性遭到破坏,给骨科医生带来了巨大挑战。在这项研究中,我们开发了一种仿生水凝胶,以改善成骨微环境并促进干细胞归巢。这种水凝胶可作为 S-亚硝基谷胱甘肽和 Ca 2+ 的容器,促进骨髓间充质干细胞(BMSCs)和人类血管内皮细胞释放生物活性一氧化氮(NO),并激活 NO/ 环鸟苷一磷酸信号通路。这些变化促进了成骨和血管生成的耦合。该水凝胶同时通过连接干细胞归巢肽 SKPPGTSS 来招募 BMSCs。利用大鼠股骨远端缺损模型证明,这种水凝胶能有效增加骨组织和新生血管的形成,并具有免疫调节功能。我们设想,这种水凝胶可能是一种微创但高效的策略,可加快骨质疏松性骨缺损的愈合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stem cell–homing biomimetic hydrogel promotes the repair of osteoporotic bone defects through osteogenic and angiogenic coupling
Osteoporotic bone defects refer to the disruption of bone structural integrity in patients with osteoporosis and pose a substantial challenge to orthopedic surgeons. In this study, we developed a biomimetic hydrogel to improve the osteogenic microenvironment and promote stem cell homing. This hydrogel served as a container for S-nitrosoglutathione and Ca2+, promoting the release of bioactive nitric oxide (NO) from bone marrow mesenchymal stem cells (BMSCs) and human vascular endothelial cells and activating the NO/cyclic guanosine monophosphate signaling pathway. These changes promote osteogenic and angiogenic couplings. The hydrogel simultaneously recruited BMSCs by conjugating the stem cell homing peptide SKPPGTSS. Using a rat distal femoral defect model, it was demonstrated that this hydrogel can effectively increase the formation of bone tissue and new blood vessels and has immune-regulating functions. We envision that this hydrogel may be a minimally invasive yet highly effective strategy for expediting the healing of osteoporotic bone defects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Synaptic-like plasticity in 2D nanofluidic memristor from competitive bicationic transport Single-step synthesis of shaped polymeric particles using initiated chemical vapor deposition in liquid crystals Tailored ultrasound propagation in microscale metamaterials via inertia design Physical experiments of waves generated by submerged steam eruptions with applications to volcanic tsunamis Mitochondrial elongation impairs breast cancer metastasis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1