{"title":"用于高性能钠离子电池的分层 Co3O4 阳极","authors":"Mewin Vincent , Sandra Sajeev , Monika Srivastava , Ewa Kowalska , Sugarthi Srinivasan , Damian Kowalski","doi":"10.1016/j.electacta.2024.145309","DOIUrl":null,"url":null,"abstract":"<div><div>Despite excellent theoretical perditions, sodium-ion batteries have not yet evolved as a reliable replacement of current lithium-ion technology, mostly due to a lack of high capacity-long cycling electrodes. Among the various candidates cobalt(II,III)oxide, Co<sub>3</sub>O<sub>4</sub>, is expected to deliver an excellent electrochemical characteristics, owing to its multi-electron conversion type nature, however, usually fails in terms of performance due to the electrode inconsistencies, associated with the poor conductivity and volumetric fluctuations. Herein, we report morphology and crystallinity engineering of the Co<sub>3</sub>O<sub>4</sub> nanostructure to substantially improve the charge storage as well as cycling performance. Largely interconnected hierarchical Co<sub>3</sub>O<sub>4</sub> synthesized via highly reproducible and industrially viable approach demonstrated efficient charge transport kinetics and excellent volume expansion buffering under the de/sodiation cycles. With its unique structural properties hierarchical electrode delivered an excellent reversible capacity (70 % of theoretical limit @25 mAg<sup>-1</sup>), rate performance (123 mAhg<sup>-1</sup> @1Ag<sup>-1</sup>) and stable cycling (82 % after 250 cycles @1Ag<sup>-1</sup>). <em>In-situ</em> Raman analysis of the electrode reactions revealed conversion type Na-ion storage in the hierarchical type of electrodes.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"509 ","pages":"Article 145309"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Co3O4 anode for high-performance Na-ion battery\",\"authors\":\"Mewin Vincent , Sandra Sajeev , Monika Srivastava , Ewa Kowalska , Sugarthi Srinivasan , Damian Kowalski\",\"doi\":\"10.1016/j.electacta.2024.145309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite excellent theoretical perditions, sodium-ion batteries have not yet evolved as a reliable replacement of current lithium-ion technology, mostly due to a lack of high capacity-long cycling electrodes. Among the various candidates cobalt(II,III)oxide, Co<sub>3</sub>O<sub>4</sub>, is expected to deliver an excellent electrochemical characteristics, owing to its multi-electron conversion type nature, however, usually fails in terms of performance due to the electrode inconsistencies, associated with the poor conductivity and volumetric fluctuations. Herein, we report morphology and crystallinity engineering of the Co<sub>3</sub>O<sub>4</sub> nanostructure to substantially improve the charge storage as well as cycling performance. Largely interconnected hierarchical Co<sub>3</sub>O<sub>4</sub> synthesized via highly reproducible and industrially viable approach demonstrated efficient charge transport kinetics and excellent volume expansion buffering under the de/sodiation cycles. With its unique structural properties hierarchical electrode delivered an excellent reversible capacity (70 % of theoretical limit @25 mAg<sup>-1</sup>), rate performance (123 mAhg<sup>-1</sup> @1Ag<sup>-1</sup>) and stable cycling (82 % after 250 cycles @1Ag<sup>-1</sup>). <em>In-situ</em> Raman analysis of the electrode reactions revealed conversion type Na-ion storage in the hierarchical type of electrodes.</div></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"509 \",\"pages\":\"Article 145309\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013468624015457\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468624015457","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Hierarchical Co3O4 anode for high-performance Na-ion battery
Despite excellent theoretical perditions, sodium-ion batteries have not yet evolved as a reliable replacement of current lithium-ion technology, mostly due to a lack of high capacity-long cycling electrodes. Among the various candidates cobalt(II,III)oxide, Co3O4, is expected to deliver an excellent electrochemical characteristics, owing to its multi-electron conversion type nature, however, usually fails in terms of performance due to the electrode inconsistencies, associated with the poor conductivity and volumetric fluctuations. Herein, we report morphology and crystallinity engineering of the Co3O4 nanostructure to substantially improve the charge storage as well as cycling performance. Largely interconnected hierarchical Co3O4 synthesized via highly reproducible and industrially viable approach demonstrated efficient charge transport kinetics and excellent volume expansion buffering under the de/sodiation cycles. With its unique structural properties hierarchical electrode delivered an excellent reversible capacity (70 % of theoretical limit @25 mAg-1), rate performance (123 mAhg-1 @1Ag-1) and stable cycling (82 % after 250 cycles @1Ag-1). In-situ Raman analysis of the electrode reactions revealed conversion type Na-ion storage in the hierarchical type of electrodes.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.