Qi Mu, Jialu Wei, Hallie K Longest, Hua Liu, Si Nian Char, Jacob T Hinrichsen, Laura E Tibbs-Cortes, Gregory R Schoenbaum, Bing Yang, Xianran Li, Jianming Yu
{"title":"在高粱 qHT7.1 和玉米 Brachytic 1 基因座中,一个 MYB 转录因子是植株高度的基础。","authors":"Qi Mu, Jialu Wei, Hallie K Longest, Hua Liu, Si Nian Char, Jacob T Hinrichsen, Laura E Tibbs-Cortes, Gregory R Schoenbaum, Bing Yang, Xianran Li, Jianming Yu","doi":"10.1111/tpj.17111","DOIUrl":null,"url":null,"abstract":"<p><p>Manipulating plant height is an essential component of crop improvement. Plant height was generally reduced through breeding in wheat, rice, and sorghum to resist lodging and increase grain yield but kept high for bioenergy crops. Here, we positionally cloned a plant height quantitative trait locus (QTL) qHT7.1 as a MYB transcription factor controlling internode elongation, cell proliferation, and cell morphology in sorghum. A 740 bp transposable element insertion in the intronic region caused a partial mis-splicing event, generating a novel transcript that included an additional exon and a premature stop codon, leading to short plant height. The dominant allele had an overall higher expression than the recessive allele across development and internode position, while both alleles' expressions peaked at 46 days after planting and progressively decreased from the top to lower internodes. The orthologue of qHT7.1 was identified to underlie the brachytic1 (br1) locus in maize. A large insertion in exon 3 and a 160 bp insertion at the promoter region were identified in the br1 mutant, while an 18 bp promoter insertion was found to be associated with reduced plant height in a natural recessive allele. CRISPR/Cas9-induced gene knockout of br1 in two maize inbred lines showed significant plant height reduction. These findings revealed functional connections across natural, mutant, and edited alleles of this MYB transcription factor in sorghum and maize. This enriched our understanding of plant height regulation and enhanced our toolbox for fine-tuning plant height for crop improvement.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A MYB transcription factor underlying plant height in sorghum qHT7.1 and maize Brachytic 1 loci.\",\"authors\":\"Qi Mu, Jialu Wei, Hallie K Longest, Hua Liu, Si Nian Char, Jacob T Hinrichsen, Laura E Tibbs-Cortes, Gregory R Schoenbaum, Bing Yang, Xianran Li, Jianming Yu\",\"doi\":\"10.1111/tpj.17111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Manipulating plant height is an essential component of crop improvement. Plant height was generally reduced through breeding in wheat, rice, and sorghum to resist lodging and increase grain yield but kept high for bioenergy crops. Here, we positionally cloned a plant height quantitative trait locus (QTL) qHT7.1 as a MYB transcription factor controlling internode elongation, cell proliferation, and cell morphology in sorghum. A 740 bp transposable element insertion in the intronic region caused a partial mis-splicing event, generating a novel transcript that included an additional exon and a premature stop codon, leading to short plant height. The dominant allele had an overall higher expression than the recessive allele across development and internode position, while both alleles' expressions peaked at 46 days after planting and progressively decreased from the top to lower internodes. The orthologue of qHT7.1 was identified to underlie the brachytic1 (br1) locus in maize. A large insertion in exon 3 and a 160 bp insertion at the promoter region were identified in the br1 mutant, while an 18 bp promoter insertion was found to be associated with reduced plant height in a natural recessive allele. CRISPR/Cas9-induced gene knockout of br1 in two maize inbred lines showed significant plant height reduction. These findings revealed functional connections across natural, mutant, and edited alleles of this MYB transcription factor in sorghum and maize. This enriched our understanding of plant height regulation and enhanced our toolbox for fine-tuning plant height for crop improvement.</p>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/tpj.17111\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/tpj.17111","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
控制株高是作物改良的重要组成部分。小麦、水稻和高粱的育种通常会降低株高以抗倒伏和增加谷物产量,但生物能源作物的育种则会保持较高的株高。在这里,我们定位克隆了一个株高数量性状位点(QTL)qHT7.1,它是一个控制高粱节间伸长、细胞增殖和细胞形态的 MYB 转录因子。内含子区域的 740 bp 转座元件插入引起了部分错误剪接事件,产生了一个包含额外外显子和过早终止密码子的新转录本,导致植株矮小。显性等位基因在整个发育过程和节间位置上的表达量总体高于隐性等位基因,而两个等位基因的表达量都在播种后 46 天达到峰值,并从节间顶部到下部逐渐降低。qHT7.1的直向同源物被确定为玉米brachytic1(br1)基因座的基础。在 br1 突变体中发现了外显子 3 中的大插入和启动子区域的 160 bp 插入,而在自然隐性等位基因中发现 18 bp 启动子插入与植株高度降低有关。在两个玉米近交系中,CRISPR/Cas9诱导的br1基因敲除显示植株高度显著降低。这些发现揭示了高粱和玉米中这种 MYB 转录因子的天然、突变和编辑等位基因之间的功能联系。这丰富了我们对植株高度调控的理解,增强了我们微调植株高度以改良作物的工具箱。
A MYB transcription factor underlying plant height in sorghum qHT7.1 and maize Brachytic 1 loci.
Manipulating plant height is an essential component of crop improvement. Plant height was generally reduced through breeding in wheat, rice, and sorghum to resist lodging and increase grain yield but kept high for bioenergy crops. Here, we positionally cloned a plant height quantitative trait locus (QTL) qHT7.1 as a MYB transcription factor controlling internode elongation, cell proliferation, and cell morphology in sorghum. A 740 bp transposable element insertion in the intronic region caused a partial mis-splicing event, generating a novel transcript that included an additional exon and a premature stop codon, leading to short plant height. The dominant allele had an overall higher expression than the recessive allele across development and internode position, while both alleles' expressions peaked at 46 days after planting and progressively decreased from the top to lower internodes. The orthologue of qHT7.1 was identified to underlie the brachytic1 (br1) locus in maize. A large insertion in exon 3 and a 160 bp insertion at the promoter region were identified in the br1 mutant, while an 18 bp promoter insertion was found to be associated with reduced plant height in a natural recessive allele. CRISPR/Cas9-induced gene knockout of br1 in two maize inbred lines showed significant plant height reduction. These findings revealed functional connections across natural, mutant, and edited alleles of this MYB transcription factor in sorghum and maize. This enriched our understanding of plant height regulation and enhanced our toolbox for fine-tuning plant height for crop improvement.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.