{"title":"工作记忆中的注意刷新及其与长时记忆的相互作用:行为和脑电图研究","authors":"Maximilien Labaronne, Anne Caclin, Gaën Plancher","doi":"10.1162/jocn_a_02267","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the growing interest in the study of attentional refreshing, the functioning of this working memory maintenance mechanism, including its cerebral underpinnings, is still debated. In particular, it remains unclear whether refreshing promotes long-term memory and whether it, in return, depends on long-term memory content to operate. Here, we used direct maintenance instructions and measured brain activity to investigate working memory maintenance with two objectives: (1) test if different behavioral and oscillatory patterns could be observed when participants were instructed to use attentional refreshing versus verbal rehearsal, and (2) observe whether and how refreshing is modulated when maintaining novel (pseudowords) versus familiar (words) memoranda. We conducted an EEG experiment using a modified Brown-Peterson task, in which we manipulated the type of maintenance engaged through explicit instructions (verbal rehearsal vs. refreshing), the type of memoranda (words vs. pseudowords), and the memory load (2 vs. 6). Using scalp EEG, we measured both neural oscillations during working memory maintenance and ERPs during the concurrent parity judgment task. For words, we showed that verbal rehearsal benefited more short-term recall whereas refreshing benefited more delayed recall. In keeping with these behavioral differences between maintenance instructions, frontal-midline theta power increased with memory load only when using verbal rehearsal, whereas occipito-parietal alpha desynchronization was larger with refreshing than verbal rehearsal. When maintaining pseudowords, verbal rehearsal also benefitted short-term recall more than refreshing. However, no long-term memory benefit of refreshing was observed for pseudowords, and oscillatory activity was not different under the two maintenance instructions. Our results provide new evidence supporting the independence between attentional refreshing and verbal rehearsal, and bring new insight into refreshing functioning. We discuss the possible interpretations of these results and the implications for the attentional refreshing literature.</p>","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attentional Refreshing in Working Memory and Its Interplay with Long-term Memory: A Behavioral and EEG Study.\",\"authors\":\"Maximilien Labaronne, Anne Caclin, Gaën Plancher\",\"doi\":\"10.1162/jocn_a_02267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the growing interest in the study of attentional refreshing, the functioning of this working memory maintenance mechanism, including its cerebral underpinnings, is still debated. In particular, it remains unclear whether refreshing promotes long-term memory and whether it, in return, depends on long-term memory content to operate. Here, we used direct maintenance instructions and measured brain activity to investigate working memory maintenance with two objectives: (1) test if different behavioral and oscillatory patterns could be observed when participants were instructed to use attentional refreshing versus verbal rehearsal, and (2) observe whether and how refreshing is modulated when maintaining novel (pseudowords) versus familiar (words) memoranda. We conducted an EEG experiment using a modified Brown-Peterson task, in which we manipulated the type of maintenance engaged through explicit instructions (verbal rehearsal vs. refreshing), the type of memoranda (words vs. pseudowords), and the memory load (2 vs. 6). Using scalp EEG, we measured both neural oscillations during working memory maintenance and ERPs during the concurrent parity judgment task. For words, we showed that verbal rehearsal benefited more short-term recall whereas refreshing benefited more delayed recall. In keeping with these behavioral differences between maintenance instructions, frontal-midline theta power increased with memory load only when using verbal rehearsal, whereas occipito-parietal alpha desynchronization was larger with refreshing than verbal rehearsal. When maintaining pseudowords, verbal rehearsal also benefitted short-term recall more than refreshing. However, no long-term memory benefit of refreshing was observed for pseudowords, and oscillatory activity was not different under the two maintenance instructions. Our results provide new evidence supporting the independence between attentional refreshing and verbal rehearsal, and bring new insight into refreshing functioning. We discuss the possible interpretations of these results and the implications for the attentional refreshing literature.</p>\",\"PeriodicalId\":51081,\"journal\":{\"name\":\"Journal of Cognitive Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cognitive Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1162/jocn_a_02267\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/jocn_a_02267","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Attentional Refreshing in Working Memory and Its Interplay with Long-term Memory: A Behavioral and EEG Study.
Despite the growing interest in the study of attentional refreshing, the functioning of this working memory maintenance mechanism, including its cerebral underpinnings, is still debated. In particular, it remains unclear whether refreshing promotes long-term memory and whether it, in return, depends on long-term memory content to operate. Here, we used direct maintenance instructions and measured brain activity to investigate working memory maintenance with two objectives: (1) test if different behavioral and oscillatory patterns could be observed when participants were instructed to use attentional refreshing versus verbal rehearsal, and (2) observe whether and how refreshing is modulated when maintaining novel (pseudowords) versus familiar (words) memoranda. We conducted an EEG experiment using a modified Brown-Peterson task, in which we manipulated the type of maintenance engaged through explicit instructions (verbal rehearsal vs. refreshing), the type of memoranda (words vs. pseudowords), and the memory load (2 vs. 6). Using scalp EEG, we measured both neural oscillations during working memory maintenance and ERPs during the concurrent parity judgment task. For words, we showed that verbal rehearsal benefited more short-term recall whereas refreshing benefited more delayed recall. In keeping with these behavioral differences between maintenance instructions, frontal-midline theta power increased with memory load only when using verbal rehearsal, whereas occipito-parietal alpha desynchronization was larger with refreshing than verbal rehearsal. When maintaining pseudowords, verbal rehearsal also benefitted short-term recall more than refreshing. However, no long-term memory benefit of refreshing was observed for pseudowords, and oscillatory activity was not different under the two maintenance instructions. Our results provide new evidence supporting the independence between attentional refreshing and verbal rehearsal, and bring new insight into refreshing functioning. We discuss the possible interpretations of these results and the implications for the attentional refreshing literature.