梯度扭曲胶合板结构强化的仿生结构水凝胶

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-11-02 DOI:10.1002/adma.202411372
Yulu Tang, Bentao Wu, Jie Li, Canhui Lu, Jianing Wu, Rui Xiong
{"title":"梯度扭曲胶合板结构强化的仿生结构水凝胶","authors":"Yulu Tang, Bentao Wu, Jie Li, Canhui Lu, Jianing Wu, Rui Xiong","doi":"10.1002/adma.202411372","DOIUrl":null,"url":null,"abstract":"Naturally structural hydrogels such as crustacean exoskeletons possess a remarkable combination of seemingly contradictory properties: high strength, modulus, and toughness coupled with exceptional fatigue resistance, owing to their hierarchical structures across multiple length scales. However, replicating these unique mechanical properties in synthetic hydrogels remains a significant challenge. This work presents a synergistic approach for constructing hierarchical structural hydrogels by employing cholesteric liquid crystal self‐assembly followed by nanocrystalline engineering. The resulting hydrogels exhibit a long‐range ordered gradient twisted plywood structure with high crystallinity to mimic the design of crustacean exoskeletons. Consequently, the structural hydrogels achieve an unprecedented combination of ultrahigh strength (46 ± 3 MPa), modulus (496 ± 25 MPa), and toughness (170 ± 14 MJ m<jats:sup>−3</jats:sup>), together with recorded high fatigue threshold (32.5 kJ m<jats:sup>−2</jats:sup>) and superior impact resistance (48 ± 2 kJ m<jats:sup>−1</jats:sup>). Additionally, through controlling geometry and compositional gradients of the hierarchical structures, a programmable shape morphing process allows for the fabrication of complex 3D hydrogels. This study not only offers valuable insights into advanced design strategies applicable to a broad range of promising hierarchical materials, but also pave the ways for load‐bearing applications in tissue engineering, wearable devices, and soft robotics.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomimetic Structural Hydrogels Reinforced by Gradient Twisted Plywood Architectures\",\"authors\":\"Yulu Tang, Bentao Wu, Jie Li, Canhui Lu, Jianing Wu, Rui Xiong\",\"doi\":\"10.1002/adma.202411372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Naturally structural hydrogels such as crustacean exoskeletons possess a remarkable combination of seemingly contradictory properties: high strength, modulus, and toughness coupled with exceptional fatigue resistance, owing to their hierarchical structures across multiple length scales. However, replicating these unique mechanical properties in synthetic hydrogels remains a significant challenge. This work presents a synergistic approach for constructing hierarchical structural hydrogels by employing cholesteric liquid crystal self‐assembly followed by nanocrystalline engineering. The resulting hydrogels exhibit a long‐range ordered gradient twisted plywood structure with high crystallinity to mimic the design of crustacean exoskeletons. Consequently, the structural hydrogels achieve an unprecedented combination of ultrahigh strength (46 ± 3 MPa), modulus (496 ± 25 MPa), and toughness (170 ± 14 MJ m<jats:sup>−3</jats:sup>), together with recorded high fatigue threshold (32.5 kJ m<jats:sup>−2</jats:sup>) and superior impact resistance (48 ± 2 kJ m<jats:sup>−1</jats:sup>). Additionally, through controlling geometry and compositional gradients of the hierarchical structures, a programmable shape morphing process allows for the fabrication of complex 3D hydrogels. This study not only offers valuable insights into advanced design strategies applicable to a broad range of promising hierarchical materials, but also pave the ways for load‐bearing applications in tissue engineering, wearable devices, and soft robotics.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202411372\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202411372","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

天然结构水凝胶(如甲壳类动物的外骨骼)具有看似矛盾的非凡特性组合:高强度、高模量和高韧性,同时由于其跨越多个长度尺度的分层结构而具有卓越的抗疲劳性。然而,在合成水凝胶中复制这些独特的机械特性仍然是一项重大挑战。本研究提出了一种协同方法,通过胆甾液晶自组装和纳米结晶工程来构建分层结构水凝胶。由此产生的水凝胶呈现出高结晶度的长程有序梯度扭曲胶合板结构,模仿了甲壳类动物外骨骼的设计。因此,结构水凝胶实现了前所未有的超高强度(46 ± 3 MPa)、模量(496 ± 25 MPa)和韧性(170 ± 14 MJ m-3)组合,同时还具有记录在案的高疲劳阈值(32.5 kJ m-2)和卓越的抗冲击性(48 ± 2 kJ m-1)。此外,通过控制分层结构的几何形状和成分梯度,可编程的形状变形过程可以制造复杂的三维水凝胶。这项研究不仅为适用于各种前景广阔的分层材料的先进设计策略提供了宝贵的见解,还为组织工程、可穿戴设备和软机器人中的承重应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biomimetic Structural Hydrogels Reinforced by Gradient Twisted Plywood Architectures
Naturally structural hydrogels such as crustacean exoskeletons possess a remarkable combination of seemingly contradictory properties: high strength, modulus, and toughness coupled with exceptional fatigue resistance, owing to their hierarchical structures across multiple length scales. However, replicating these unique mechanical properties in synthetic hydrogels remains a significant challenge. This work presents a synergistic approach for constructing hierarchical structural hydrogels by employing cholesteric liquid crystal self‐assembly followed by nanocrystalline engineering. The resulting hydrogels exhibit a long‐range ordered gradient twisted plywood structure with high crystallinity to mimic the design of crustacean exoskeletons. Consequently, the structural hydrogels achieve an unprecedented combination of ultrahigh strength (46 ± 3 MPa), modulus (496 ± 25 MPa), and toughness (170 ± 14 MJ m−3), together with recorded high fatigue threshold (32.5 kJ m−2) and superior impact resistance (48 ± 2 kJ m−1). Additionally, through controlling geometry and compositional gradients of the hierarchical structures, a programmable shape morphing process allows for the fabrication of complex 3D hydrogels. This study not only offers valuable insights into advanced design strategies applicable to a broad range of promising hierarchical materials, but also pave the ways for load‐bearing applications in tissue engineering, wearable devices, and soft robotics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Performance Prediction of High-Entropy Perovskites La0.8Sr0.2MnxCoyFezO3 with Automated High-Throughput Characterization of Combinatorial Libraries and Machine Learning Biomimetic Chlorosomes: Oxygen-Independent Photocatalytic Nanoreactors for Efficient Combination Photoimmunotherapy Substantially Enhanced Spin Polarization in Epitaxial CrTe2 Quantum Films Unlocking the Trade-off Between Intrinsic and Interfacial Thermal Transport of Boron Nitride Nanosheets by Surface Functionalization for Advanced Thermal Interface Materials Ultrafast Na-Ion Storage in Amorphization Engineered Hollow Vanadium Oxide/MXene Nanohybrids for High-Performance Sodium-Ion Hybrid Capacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1