Lele You, Banghua Yang, Xi Lu, Aolei Yang, Yonghuai Zhang, Xiaoying Bi, Shu Zhou
{"title":"慢性原发性疼痛与抑郁症大脑活动的异同:静息态微观状态和听觉怪球任务的证据。","authors":"Lele You, Banghua Yang, Xi Lu, Aolei Yang, Yonghuai Zhang, Xiaoying Bi, Shu Zhou","doi":"10.1016/j.bbr.2024.115319","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In 2019, the International Association for the Study of Pain introduced the concept of 'chronic primary pain (CPP)', characterized by persistent non-organic pain with emotional and functional abnormalities. Underdiagnosed and linked to depression, CPP has poorly understood neural characteristics. Electroencephalogram (EEG) microstates enable detailed examination of brain network dynamics at the millisecond level. Incorporating task-related EEG features offers a comprehensive neurophysiological signature of brain dysfunction, facilitating exploration of potential neural mechanisms.</p><p><strong>Methods: </strong>This study employed resting-state and task-related auditory Oddball EEG paradigm to evaluate 20 healthy controls, 20 patients with depression, and 20 patients with CPP. An 8-minute recording of resting-state EEG was conducted to identify four typical microstates (A-D). Additionally, power spectral density (PSD) features were examined during an auditory Oddball paradigm.</p><p><strong>Results: </strong>Both CPP and Major Depressive Disorder (MDD) patients exhibited reduced occurrence rate and transition probabilities of other microstates to microstate C during resting-state EEG. Furthermore, more pronounced increase in Gamma PSD was observed in the occipital region of CPP during the Oddball task. In CPP, both resting-state microstate C and task-related Gamma PSD correlated with pain and emotional indicators. Notably, microstate C occurrence positively correlated with occipital Gamma PSD in MDD.</p><p><strong>Conclusion: </strong>Conclusively, both CPP and MDD display dynamic abnormalities within the salient network, closely associated with pain and depressive symptoms in CPP. Unlike MDD, CPPs' dynamic network changes appear unrelated to perceptual integration function, indicating differing microstate functional impacts. Combining resting-state microstates and Oddball tasks may offer a promising avenue for identifying potential biomarkers in objectively assessing chronic primary pain.</p>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Similarities and differences between chronic primary pain and depression in brain activities: Evidence from resting-state microstates and auditory Oddball task.\",\"authors\":\"Lele You, Banghua Yang, Xi Lu, Aolei Yang, Yonghuai Zhang, Xiaoying Bi, Shu Zhou\",\"doi\":\"10.1016/j.bbr.2024.115319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In 2019, the International Association for the Study of Pain introduced the concept of 'chronic primary pain (CPP)', characterized by persistent non-organic pain with emotional and functional abnormalities. Underdiagnosed and linked to depression, CPP has poorly understood neural characteristics. Electroencephalogram (EEG) microstates enable detailed examination of brain network dynamics at the millisecond level. Incorporating task-related EEG features offers a comprehensive neurophysiological signature of brain dysfunction, facilitating exploration of potential neural mechanisms.</p><p><strong>Methods: </strong>This study employed resting-state and task-related auditory Oddball EEG paradigm to evaluate 20 healthy controls, 20 patients with depression, and 20 patients with CPP. An 8-minute recording of resting-state EEG was conducted to identify four typical microstates (A-D). Additionally, power spectral density (PSD) features were examined during an auditory Oddball paradigm.</p><p><strong>Results: </strong>Both CPP and Major Depressive Disorder (MDD) patients exhibited reduced occurrence rate and transition probabilities of other microstates to microstate C during resting-state EEG. Furthermore, more pronounced increase in Gamma PSD was observed in the occipital region of CPP during the Oddball task. In CPP, both resting-state microstate C and task-related Gamma PSD correlated with pain and emotional indicators. Notably, microstate C occurrence positively correlated with occipital Gamma PSD in MDD.</p><p><strong>Conclusion: </strong>Conclusively, both CPP and MDD display dynamic abnormalities within the salient network, closely associated with pain and depressive symptoms in CPP. Unlike MDD, CPPs' dynamic network changes appear unrelated to perceptual integration function, indicating differing microstate functional impacts. Combining resting-state microstates and Oddball tasks may offer a promising avenue for identifying potential biomarkers in objectively assessing chronic primary pain.</p>\",\"PeriodicalId\":8823,\"journal\":{\"name\":\"Behavioural Brain Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Brain Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bbr.2024.115319\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.bbr.2024.115319","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Similarities and differences between chronic primary pain and depression in brain activities: Evidence from resting-state microstates and auditory Oddball task.
Background: In 2019, the International Association for the Study of Pain introduced the concept of 'chronic primary pain (CPP)', characterized by persistent non-organic pain with emotional and functional abnormalities. Underdiagnosed and linked to depression, CPP has poorly understood neural characteristics. Electroencephalogram (EEG) microstates enable detailed examination of brain network dynamics at the millisecond level. Incorporating task-related EEG features offers a comprehensive neurophysiological signature of brain dysfunction, facilitating exploration of potential neural mechanisms.
Methods: This study employed resting-state and task-related auditory Oddball EEG paradigm to evaluate 20 healthy controls, 20 patients with depression, and 20 patients with CPP. An 8-minute recording of resting-state EEG was conducted to identify four typical microstates (A-D). Additionally, power spectral density (PSD) features were examined during an auditory Oddball paradigm.
Results: Both CPP and Major Depressive Disorder (MDD) patients exhibited reduced occurrence rate and transition probabilities of other microstates to microstate C during resting-state EEG. Furthermore, more pronounced increase in Gamma PSD was observed in the occipital region of CPP during the Oddball task. In CPP, both resting-state microstate C and task-related Gamma PSD correlated with pain and emotional indicators. Notably, microstate C occurrence positively correlated with occipital Gamma PSD in MDD.
Conclusion: Conclusively, both CPP and MDD display dynamic abnormalities within the salient network, closely associated with pain and depressive symptoms in CPP. Unlike MDD, CPPs' dynamic network changes appear unrelated to perceptual integration function, indicating differing microstate functional impacts. Combining resting-state microstates and Oddball tasks may offer a promising avenue for identifying potential biomarkers in objectively assessing chronic primary pain.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.