Utkarsh Vijay, Diego E. Galvez-Aranda, Franco M. Zanotto, Tan Le-Dinh, Mohammed Alabdali, Mark Asch, Alejandro A. Franco
{"title":"电池电极制造模拟中基于物理的模拟与深度学习相结合的混合建模方法","authors":"Utkarsh Vijay, Diego E. Galvez-Aranda, Franco M. Zanotto, Tan Le-Dinh, Mohammed Alabdali, Mark Asch, Alejandro A. Franco","doi":"10.1016/j.ensm.2024.103883","DOIUrl":null,"url":null,"abstract":"Lithium-ion battery (LIB) performance is significantly influenced by its manufacturing process. Manufacturing of an optimized electrode can incur high production costs such as high energy consumption, high scrap rates and emissions. This is due to the process that consists of a series of manufacturing steps presenting a complex interrelationship, thus limiting the understanding of performance as a function of manufacturing parameters. While several empirical and computational methods are employed for optimization, they are demanding in terms of resources such as materials or computational effort. By leveraging Deep Learning (DL), we can enhance our understanding of the complex manufacturing processes and accelerate its optimization. We propose a data-driven supervised DL methodology to complement physics-based LIB cathode manufacturing simulations. The trained DL-based predictive model integrates well into the manufacturing simulation framework to forecast cathode slurry microstructures. The DL model demonstrates robust predictive performance for LIB NMC-111 and LiFePO<sub>4</sub>–based slurries and slurries for a solid-state battery NMC-622/argyrodite composite electrode preparation. While the current work is focused on the cathode slurry process, the proposed methodology has potential for application to drying and calendering steps. This approach will be helpful in streamlining lab-scale electrode manufacturing, and reducing errors, waste and resource consumption.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":null,"pages":null},"PeriodicalIF":18.9000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Modelling Approach Coupling Physics-based Simulation and Deep Learning for Battery Electrode Manufacturing Simulations\",\"authors\":\"Utkarsh Vijay, Diego E. Galvez-Aranda, Franco M. Zanotto, Tan Le-Dinh, Mohammed Alabdali, Mark Asch, Alejandro A. Franco\",\"doi\":\"10.1016/j.ensm.2024.103883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-ion battery (LIB) performance is significantly influenced by its manufacturing process. Manufacturing of an optimized electrode can incur high production costs such as high energy consumption, high scrap rates and emissions. This is due to the process that consists of a series of manufacturing steps presenting a complex interrelationship, thus limiting the understanding of performance as a function of manufacturing parameters. While several empirical and computational methods are employed for optimization, they are demanding in terms of resources such as materials or computational effort. By leveraging Deep Learning (DL), we can enhance our understanding of the complex manufacturing processes and accelerate its optimization. We propose a data-driven supervised DL methodology to complement physics-based LIB cathode manufacturing simulations. The trained DL-based predictive model integrates well into the manufacturing simulation framework to forecast cathode slurry microstructures. The DL model demonstrates robust predictive performance for LIB NMC-111 and LiFePO<sub>4</sub>–based slurries and slurries for a solid-state battery NMC-622/argyrodite composite electrode preparation. While the current work is focused on the cathode slurry process, the proposed methodology has potential for application to drying and calendering steps. This approach will be helpful in streamlining lab-scale electrode manufacturing, and reducing errors, waste and resource consumption.\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ensm.2024.103883\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103883","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A Hybrid Modelling Approach Coupling Physics-based Simulation and Deep Learning for Battery Electrode Manufacturing Simulations
Lithium-ion battery (LIB) performance is significantly influenced by its manufacturing process. Manufacturing of an optimized electrode can incur high production costs such as high energy consumption, high scrap rates and emissions. This is due to the process that consists of a series of manufacturing steps presenting a complex interrelationship, thus limiting the understanding of performance as a function of manufacturing parameters. While several empirical and computational methods are employed for optimization, they are demanding in terms of resources such as materials or computational effort. By leveraging Deep Learning (DL), we can enhance our understanding of the complex manufacturing processes and accelerate its optimization. We propose a data-driven supervised DL methodology to complement physics-based LIB cathode manufacturing simulations. The trained DL-based predictive model integrates well into the manufacturing simulation framework to forecast cathode slurry microstructures. The DL model demonstrates robust predictive performance for LIB NMC-111 and LiFePO4–based slurries and slurries for a solid-state battery NMC-622/argyrodite composite electrode preparation. While the current work is focused on the cathode slurry process, the proposed methodology has potential for application to drying and calendering steps. This approach will be helpful in streamlining lab-scale electrode manufacturing, and reducing errors, waste and resource consumption.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.