Yiqian Zhu, Xuezhe Liu, Keyi Zhang, Mohamed El-Newehy, Meera Moydeen Abdulhameed, Xiumei Mo, Lei Cao, Yongfei Wang
{"title":"基于电纺丝和三维打印的双层复合支架在经鼻手术颅底重建中的应用。","authors":"Yiqian Zhu, Xuezhe Liu, Keyi Zhang, Mohamed El-Newehy, Meera Moydeen Abdulhameed, Xiumei Mo, Lei Cao, Yongfei Wang","doi":"10.1016/j.colsurfb.2024.114337","DOIUrl":null,"url":null,"abstract":"<p><p>Skull base defects are a common complication after transsphenoidal endoscopic surgery, and their commonly used autologous tissue repair has limited clinical outcomes. Tissue-engineered scaffolds prepared by advanced techniques of electrostatic spinning and three-dimensional (3D) printing was an effective way to solve this problem. In this study, soft tissue scaffolds consisting of centripetal nanofiber mats and 3D-printed hard tissue scaffolds consisting of porous structures were prepared, respectively. And the two layers were combined to obtain bilayer composite scaffolds. The physicochemical characterization proved that the nanofiber mat prepared by polylactide-polycaprolactone (PLCL) electrospinning had a uniform centripetal nanofiber structure, and the loaded bFGF growth factor could achieve a slow release for 14 days and exert its bioactivity to promote the proliferation of fibroblasts. The porous scaffolds prepared with polycaprolactone (PCL), and hydroxyapatite (HA) 3D printing have a 300 μm macroporous structure with good biocompatibility. In vivo experiments results demonstrated that the bilayer composite scaffold could promote soft tissue repair of the skull base membrane through the centripetal nanofiber structure and slow-release of bFGF factor. It also played the role of promoting the regeneration of the skull base bone tissue. In addition, the centripetal nanofiber structure also had a promotional effect on the regeneration of skull base bone tissue.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114337"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of electrospinning and 3D-printing based bilayer composite scaffold in the skull base reconstruction during transnasal surgery.\",\"authors\":\"Yiqian Zhu, Xuezhe Liu, Keyi Zhang, Mohamed El-Newehy, Meera Moydeen Abdulhameed, Xiumei Mo, Lei Cao, Yongfei Wang\",\"doi\":\"10.1016/j.colsurfb.2024.114337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skull base defects are a common complication after transsphenoidal endoscopic surgery, and their commonly used autologous tissue repair has limited clinical outcomes. Tissue-engineered scaffolds prepared by advanced techniques of electrostatic spinning and three-dimensional (3D) printing was an effective way to solve this problem. In this study, soft tissue scaffolds consisting of centripetal nanofiber mats and 3D-printed hard tissue scaffolds consisting of porous structures were prepared, respectively. And the two layers were combined to obtain bilayer composite scaffolds. The physicochemical characterization proved that the nanofiber mat prepared by polylactide-polycaprolactone (PLCL) electrospinning had a uniform centripetal nanofiber structure, and the loaded bFGF growth factor could achieve a slow release for 14 days and exert its bioactivity to promote the proliferation of fibroblasts. The porous scaffolds prepared with polycaprolactone (PCL), and hydroxyapatite (HA) 3D printing have a 300 μm macroporous structure with good biocompatibility. In vivo experiments results demonstrated that the bilayer composite scaffold could promote soft tissue repair of the skull base membrane through the centripetal nanofiber structure and slow-release of bFGF factor. It also played the role of promoting the regeneration of the skull base bone tissue. In addition, the centripetal nanofiber structure also had a promotional effect on the regeneration of skull base bone tissue.</p>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":\"245 \",\"pages\":\"114337\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1016/j.colsurfb.2024.114337\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114337","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Application of electrospinning and 3D-printing based bilayer composite scaffold in the skull base reconstruction during transnasal surgery.
Skull base defects are a common complication after transsphenoidal endoscopic surgery, and their commonly used autologous tissue repair has limited clinical outcomes. Tissue-engineered scaffolds prepared by advanced techniques of electrostatic spinning and three-dimensional (3D) printing was an effective way to solve this problem. In this study, soft tissue scaffolds consisting of centripetal nanofiber mats and 3D-printed hard tissue scaffolds consisting of porous structures were prepared, respectively. And the two layers were combined to obtain bilayer composite scaffolds. The physicochemical characterization proved that the nanofiber mat prepared by polylactide-polycaprolactone (PLCL) electrospinning had a uniform centripetal nanofiber structure, and the loaded bFGF growth factor could achieve a slow release for 14 days and exert its bioactivity to promote the proliferation of fibroblasts. The porous scaffolds prepared with polycaprolactone (PCL), and hydroxyapatite (HA) 3D printing have a 300 μm macroporous structure with good biocompatibility. In vivo experiments results demonstrated that the bilayer composite scaffold could promote soft tissue repair of the skull base membrane through the centripetal nanofiber structure and slow-release of bFGF factor. It also played the role of promoting the regeneration of the skull base bone tissue. In addition, the centripetal nanofiber structure also had a promotional effect on the regeneration of skull base bone tissue.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.