热致性向列液晶中的铁流体液滴链。

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Chemphyschem Pub Date : 2024-11-03 DOI:10.1002/cphc.202400858
Varun Chandrasekhar, Jian Ren Lu, Ingo Dierking
{"title":"热致性向列液晶中的铁流体液滴链。","authors":"Varun Chandrasekhar, Jian Ren Lu, Ingo Dierking","doi":"10.1002/cphc.202400858","DOIUrl":null,"url":null,"abstract":"<p><p>Dispersing ferrofluids in liquid crystals (LCs) produces unique systems which possess magnetic functionality and novel phenomena such as droplet chaining. This work reports the formation of ferrofluid droplet chains facilitated by the topological defects within the LC director field, induced by the dispersed ferrofluid. The translational and rotational motion of these chains could be controlled via application of external magnetic fields. The process of the droplet chain formation in LCs can be stabilized by the addition of surfactants. The magnetic colloidal particles in the ferrofluid located at the interface between the ferrofluid and the LC are arranged so that a boundary layer was formed. The velocities and boundary layer thickness values of ferrofluid droplet chains in nematic 5CB (4-Cyano-4'-pentylbiphenyl) were investigated for varying average droplet sizes and number of droplets in a chain. The creation and behaviour of ferrofluid droplet chains in 5CB with the addition of the surfactant polysorbate 60 (Tween-60) and without, was comparatively investigated. The integration of liquid crystals and ferrofluids along with the incorporation of functional materials facilitates the innovative development of advanced materials for future applications.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferrofluid Droplet Chains in Thermotropic Nematic Liquid Crystals.\",\"authors\":\"Varun Chandrasekhar, Jian Ren Lu, Ingo Dierking\",\"doi\":\"10.1002/cphc.202400858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dispersing ferrofluids in liquid crystals (LCs) produces unique systems which possess magnetic functionality and novel phenomena such as droplet chaining. This work reports the formation of ferrofluid droplet chains facilitated by the topological defects within the LC director field, induced by the dispersed ferrofluid. The translational and rotational motion of these chains could be controlled via application of external magnetic fields. The process of the droplet chain formation in LCs can be stabilized by the addition of surfactants. The magnetic colloidal particles in the ferrofluid located at the interface between the ferrofluid and the LC are arranged so that a boundary layer was formed. The velocities and boundary layer thickness values of ferrofluid droplet chains in nematic 5CB (4-Cyano-4'-pentylbiphenyl) were investigated for varying average droplet sizes and number of droplets in a chain. The creation and behaviour of ferrofluid droplet chains in 5CB with the addition of the surfactant polysorbate 60 (Tween-60) and without, was comparatively investigated. The integration of liquid crystals and ferrofluids along with the incorporation of functional materials facilitates the innovative development of advanced materials for future applications.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202400858\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400858","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在液晶(LC)中分散铁流体可产生独特的系统,这些系统具有磁性功能和液滴链等新现象。这项研究报告了由分散的铁流体引起的液晶导向场内的拓扑缺陷促成的铁流体液滴链的形成。这些液滴链的平移和旋转运动可通过施加外部磁场来控制。液相色谱中液滴链的形成过程可通过添加表面活性剂来稳定。铁流体中的磁性胶体颗粒位于铁流体和低浓液相界面处,因此形成了一个边界层。研究了向列 5CB(4-氰基-4'-戊基联苯)中铁流体液滴链的速度和边界层厚度值,液滴链中液滴的平均尺寸和数量各不相同。在 5CB 中添加表面活性剂聚山梨醇酯 60(吐温-60)和不添加表面活性剂时,对铁流体液滴链的形成和行为进行了比较研究。液晶与铁流体的结合以及功能材料的加入,促进了先进材料的创新发展,有利于未来的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ferrofluid Droplet Chains in Thermotropic Nematic Liquid Crystals.

Dispersing ferrofluids in liquid crystals (LCs) produces unique systems which possess magnetic functionality and novel phenomena such as droplet chaining. This work reports the formation of ferrofluid droplet chains facilitated by the topological defects within the LC director field, induced by the dispersed ferrofluid. The translational and rotational motion of these chains could be controlled via application of external magnetic fields. The process of the droplet chain formation in LCs can be stabilized by the addition of surfactants. The magnetic colloidal particles in the ferrofluid located at the interface between the ferrofluid and the LC are arranged so that a boundary layer was formed. The velocities and boundary layer thickness values of ferrofluid droplet chains in nematic 5CB (4-Cyano-4'-pentylbiphenyl) were investigated for varying average droplet sizes and number of droplets in a chain. The creation and behaviour of ferrofluid droplet chains in 5CB with the addition of the surfactant polysorbate 60 (Tween-60) and without, was comparatively investigated. The integration of liquid crystals and ferrofluids along with the incorporation of functional materials facilitates the innovative development of advanced materials for future applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
期刊最新文献
Electrophoretic deposition of carbon-ionomer layers on proton conducting membranes. Exploring Gas Evolution Oscillators: Mechanisms and Applications. Meta-connected Oligo-Azobenzenes Outperform Their Para Counterparts. Absence of the third linker domain of ApcE subunit in phycobilisome from Synechocystis 6803 reduces rods-to-core excitation energy transfer. Metal-Metal Bonding in Tri-Actinide Clusters: A DFT Study of [An3Cl6] z (z = 1-6) and [An3Cl6Cp3] z (z = -2- +3; An = Ac, Th, Pa, U, Np, Pu).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1