Cassie E Stylianou, George A R Wiggins, Vanessa L Lau, Joe Dennis, Andrew N Shelling, Michelle Wilson, Peter Sykes, Frederic Amant, Daniela Annibali, Wout De Wispelaere, Douglas F Easton, Peter A Fasching, Dylan M Glubb, Ellen L Goode, Diether Lambrechts, Paul D P Pharoah, Rodney J Scott, Emma Tham, Ian Tomlinson, Manjeet K Bolla, Fergus J Couch, Kamila Czene, Thilo Dörk, Alison M Dunning, Olivia Fletcher, Montserrat García-Closas, Reiner Hoppe, Helena Jernström, Rudolf Kaaks, Kyriaki Michailidou, Nadia Obi, Melissa C Southey, Jennifer Stone, Qin Wang, Amanda B Spurdle, Tracy A O'Mara, John Pearson, Logan C Walker
{"title":"基因拷贝数变异与子宫内膜癌风险。","authors":"Cassie E Stylianou, George A R Wiggins, Vanessa L Lau, Joe Dennis, Andrew N Shelling, Michelle Wilson, Peter Sykes, Frederic Amant, Daniela Annibali, Wout De Wispelaere, Douglas F Easton, Peter A Fasching, Dylan M Glubb, Ellen L Goode, Diether Lambrechts, Paul D P Pharoah, Rodney J Scott, Emma Tham, Ian Tomlinson, Manjeet K Bolla, Fergus J Couch, Kamila Czene, Thilo Dörk, Alison M Dunning, Olivia Fletcher, Montserrat García-Closas, Reiner Hoppe, Helena Jernström, Rudolf Kaaks, Kyriaki Michailidou, Nadia Obi, Melissa C Southey, Jennifer Stone, Qin Wang, Amanda B Spurdle, Tracy A O'Mara, John Pearson, Logan C Walker","doi":"10.1007/s00439-024-02707-9","DOIUrl":null,"url":null,"abstract":"<p><p>Known risk loci for endometrial cancer explain approximately one third of familial endometrial cancer. However, the association of germline copy number variants (CNVs) with endometrial cancer risk remains relatively unknown. We conducted a genome-wide analysis of rare CNVs overlapping gene regions in 4115 endometrial cancer cases and 17,818 controls to identify functionally relevant variants associated with disease. We identified a 1.22-fold greater number of CNVs in DNA samples from cases compared to DNA samples from controls (p = 4.4 × 10<sup>-63</sup>). Under three models of putative CNV impact (deletion, duplication, and loss of function), genome-wide association studies identified 141 candidate gene loci associated (p < 0.01) with endometrial cancer risk. Pathway analysis of the candidate loci revealed an enrichment of genes involved in the 16p11.2 proximal deletion syndrome, driven by a large recurrent deletion (chr16:29,595,483-30,159,693) identified in 0.15% of endometrial cancer cases and 0.02% of control participants. Together, these data provide evidence that rare copy number variants have a role in endometrial cancer susceptibility and that the proximal 16p11.2 BP4-BP5 region contains 25 candidate risk gene(s) that warrant further analysis to better understand their role in human disease.</p>","PeriodicalId":13175,"journal":{"name":"Human Genetics","volume":" ","pages":"1481-1498"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576655/pdf/","citationCount":"0","resultStr":"{\"title\":\"Germline copy number variants and endometrial cancer risk.\",\"authors\":\"Cassie E Stylianou, George A R Wiggins, Vanessa L Lau, Joe Dennis, Andrew N Shelling, Michelle Wilson, Peter Sykes, Frederic Amant, Daniela Annibali, Wout De Wispelaere, Douglas F Easton, Peter A Fasching, Dylan M Glubb, Ellen L Goode, Diether Lambrechts, Paul D P Pharoah, Rodney J Scott, Emma Tham, Ian Tomlinson, Manjeet K Bolla, Fergus J Couch, Kamila Czene, Thilo Dörk, Alison M Dunning, Olivia Fletcher, Montserrat García-Closas, Reiner Hoppe, Helena Jernström, Rudolf Kaaks, Kyriaki Michailidou, Nadia Obi, Melissa C Southey, Jennifer Stone, Qin Wang, Amanda B Spurdle, Tracy A O'Mara, John Pearson, Logan C Walker\",\"doi\":\"10.1007/s00439-024-02707-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Known risk loci for endometrial cancer explain approximately one third of familial endometrial cancer. However, the association of germline copy number variants (CNVs) with endometrial cancer risk remains relatively unknown. We conducted a genome-wide analysis of rare CNVs overlapping gene regions in 4115 endometrial cancer cases and 17,818 controls to identify functionally relevant variants associated with disease. We identified a 1.22-fold greater number of CNVs in DNA samples from cases compared to DNA samples from controls (p = 4.4 × 10<sup>-63</sup>). Under three models of putative CNV impact (deletion, duplication, and loss of function), genome-wide association studies identified 141 candidate gene loci associated (p < 0.01) with endometrial cancer risk. Pathway analysis of the candidate loci revealed an enrichment of genes involved in the 16p11.2 proximal deletion syndrome, driven by a large recurrent deletion (chr16:29,595,483-30,159,693) identified in 0.15% of endometrial cancer cases and 0.02% of control participants. Together, these data provide evidence that rare copy number variants have a role in endometrial cancer susceptibility and that the proximal 16p11.2 BP4-BP5 region contains 25 candidate risk gene(s) that warrant further analysis to better understand their role in human disease.</p>\",\"PeriodicalId\":13175,\"journal\":{\"name\":\"Human Genetics\",\"volume\":\" \",\"pages\":\"1481-1498\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576655/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00439-024-02707-9\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00439-024-02707-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Germline copy number variants and endometrial cancer risk.
Known risk loci for endometrial cancer explain approximately one third of familial endometrial cancer. However, the association of germline copy number variants (CNVs) with endometrial cancer risk remains relatively unknown. We conducted a genome-wide analysis of rare CNVs overlapping gene regions in 4115 endometrial cancer cases and 17,818 controls to identify functionally relevant variants associated with disease. We identified a 1.22-fold greater number of CNVs in DNA samples from cases compared to DNA samples from controls (p = 4.4 × 10-63). Under three models of putative CNV impact (deletion, duplication, and loss of function), genome-wide association studies identified 141 candidate gene loci associated (p < 0.01) with endometrial cancer risk. Pathway analysis of the candidate loci revealed an enrichment of genes involved in the 16p11.2 proximal deletion syndrome, driven by a large recurrent deletion (chr16:29,595,483-30,159,693) identified in 0.15% of endometrial cancer cases and 0.02% of control participants. Together, these data provide evidence that rare copy number variants have a role in endometrial cancer susceptibility and that the proximal 16p11.2 BP4-BP5 region contains 25 candidate risk gene(s) that warrant further analysis to better understand their role in human disease.
期刊介绍:
Human Genetics is a monthly journal publishing original and timely articles on all aspects of human genetics. The Journal particularly welcomes articles in the areas of Behavioral genetics, Bioinformatics, Cancer genetics and genomics, Cytogenetics, Developmental genetics, Disease association studies, Dysmorphology, ELSI (ethical, legal and social issues), Evolutionary genetics, Gene expression, Gene structure and organization, Genetics of complex diseases and epistatic interactions, Genetic epidemiology, Genome biology, Genome structure and organization, Genotype-phenotype relationships, Human Genomics, Immunogenetics and genomics, Linkage analysis and genetic mapping, Methods in Statistical Genetics, Molecular diagnostics, Mutation detection and analysis, Neurogenetics, Physical mapping and Population Genetics. Articles reporting animal models relevant to human biology or disease are also welcome. Preference will be given to those articles which address clinically relevant questions or which provide new insights into human biology.
Unless reporting entirely novel and unusual aspects of a topic, clinical case reports, cytogenetic case reports, papers on descriptive population genetics, articles dealing with the frequency of polymorphisms or additional mutations within genes in which numerous lesions have already been described, and papers that report meta-analyses of previously published datasets will normally not be accepted.
The Journal typically will not consider for publication manuscripts that report merely the isolation, map position, structure, and tissue expression profile of a gene of unknown function unless the gene is of particular interest or is a candidate gene involved in a human trait or disorder.