在可持续绿色金属制造中利用电子废物的当前回收创新。

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Pub Date : 2024-12-02 Epub Date: 2024-11-04 DOI:10.1098/rsta.2023.0239
Rumana Hossain, Veena Sahajwalla
{"title":"在可持续绿色金属制造中利用电子废物的当前回收创新。","authors":"Rumana Hossain, Veena Sahajwalla","doi":"10.1098/rsta.2023.0239","DOIUrl":null,"url":null,"abstract":"<p><p>The ever-increasing market demand and the rapid uptake of the technologies of electronics create an unavoidable generation of high-volume electronic waste (e-waste). E-waste is embedded with valuable metals, alloys, precious metals and rare earth elements. A substantial portion of e-waste ends up in landfills and is incinerated due to its complex multi-material structure, creating loss of resources and often leading to environmental contamination from the release of landfill leachates and combustion gases. Conversely, due to the ongoing demand for valuable metals, global industrial and manufacturing supply chains are experiencing enormous pressure. To address this issue, researchers have put multifaceted efforts into developing viable technologies and emphasized right-scaling for e-waste reclamation. Several conventional and emerging recycling technologies have been recognized to be efficient in recovering metal alloys, precious and rare earth metals from e-waste. The recovery of valuable metals from e-waste will create an alternative source of value-added raw materials, which could become part of supply chains for manufacturing. This review discusses the urgency of metal recycling from e-waste for sustainability and economic benefit, up-to-date recycling technologies with an emphasis on their potential role in creating a circular economy in e-waste management.This article is part of the discussion meeting issue 'Sustainable metals: science and systems'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2284","pages":"20230239"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531906/pdf/","citationCount":"0","resultStr":"{\"title\":\"Current recycling innovations to utilize e-waste in sustainable green metal manufacturing.\",\"authors\":\"Rumana Hossain, Veena Sahajwalla\",\"doi\":\"10.1098/rsta.2023.0239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ever-increasing market demand and the rapid uptake of the technologies of electronics create an unavoidable generation of high-volume electronic waste (e-waste). E-waste is embedded with valuable metals, alloys, precious metals and rare earth elements. A substantial portion of e-waste ends up in landfills and is incinerated due to its complex multi-material structure, creating loss of resources and often leading to environmental contamination from the release of landfill leachates and combustion gases. Conversely, due to the ongoing demand for valuable metals, global industrial and manufacturing supply chains are experiencing enormous pressure. To address this issue, researchers have put multifaceted efforts into developing viable technologies and emphasized right-scaling for e-waste reclamation. Several conventional and emerging recycling technologies have been recognized to be efficient in recovering metal alloys, precious and rare earth metals from e-waste. The recovery of valuable metals from e-waste will create an alternative source of value-added raw materials, which could become part of supply chains for manufacturing. This review discusses the urgency of metal recycling from e-waste for sustainability and economic benefit, up-to-date recycling technologies with an emphasis on their potential role in creating a circular economy in e-waste management.This article is part of the discussion meeting issue 'Sustainable metals: science and systems'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"382 2284\",\"pages\":\"20230239\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531906/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2023.0239\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0239","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

市场需求的不断增长和电子技术的迅速普及,不可避免地产生了大量电子废物(电子垃圾)。电子垃圾中含有贵重金属、合金、贵金属和稀土元素。由于其复杂的多材料结构,相当一部分电子垃圾最终被填埋或焚烧,造成资源损失,并往往因填埋渗滤液和燃烧气体的释放而导致环境污染。相反,由于对贵金属的持续需求,全球工业和制造业供应链正承受着巨大的压力。为解决这一问题,研究人员从多方面努力开发可行的技术,并强调电子废物回收的正确规模。一些传统的和新兴的回收技术被认为可以有效地从电子废弃物中回收金属合金、贵金属和稀土金属。从电子废弃物中回收有价值的金属将为增值原材料创造一个替代来源,并可成为制造业供应链的一部分。本文讨论了从电子废弃物中回收金属以实现可持续发展和经济效益的紧迫性,以及最新的回收技术,重点是这些技术在电子废弃物管理中创建循环经济的潜在作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Current recycling innovations to utilize e-waste in sustainable green metal manufacturing.

The ever-increasing market demand and the rapid uptake of the technologies of electronics create an unavoidable generation of high-volume electronic waste (e-waste). E-waste is embedded with valuable metals, alloys, precious metals and rare earth elements. A substantial portion of e-waste ends up in landfills and is incinerated due to its complex multi-material structure, creating loss of resources and often leading to environmental contamination from the release of landfill leachates and combustion gases. Conversely, due to the ongoing demand for valuable metals, global industrial and manufacturing supply chains are experiencing enormous pressure. To address this issue, researchers have put multifaceted efforts into developing viable technologies and emphasized right-scaling for e-waste reclamation. Several conventional and emerging recycling technologies have been recognized to be efficient in recovering metal alloys, precious and rare earth metals from e-waste. The recovery of valuable metals from e-waste will create an alternative source of value-added raw materials, which could become part of supply chains for manufacturing. This review discusses the urgency of metal recycling from e-waste for sustainability and economic benefit, up-to-date recycling technologies with an emphasis on their potential role in creating a circular economy in e-waste management.This article is part of the discussion meeting issue 'Sustainable metals: science and systems'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
期刊最新文献
Addressing the urban congestion challenge based on traffic bottlenecks. Analysing macroscopic traffic rhythms and city size in affluent cities: insights from a global panel data of 25 cities. Artefact design and societal worldview. Cities beyond proximity. Mapping sidewalk accessibility with smartphone imagery and Visual AI: a participatory approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1