用于超临界流体色谱分离控制的双柱 pH 值可切换水固定相系统

IF 2.8 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Journal of separation science Pub Date : 2024-11-04 DOI:10.1002/jssc.70008
Emmanuel A. Nai, Kevin B. Thurbide
{"title":"用于超临界流体色谱分离控制的双柱 pH 值可切换水固定相系统","authors":"Emmanuel A. Nai,&nbsp;Kevin B. Thurbide","doi":"10.1002/jssc.70008","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A dual column system comprised of a pH switchable water stationary phase column and a conventional non-polar capillary column is introduced for use in Supercritical Fluid Chromatography (SFC). By removing or adding NH<sub>4</sub>OH to the system hydration source, the water stationary phase pH can be rapidly switched between acidic (measured at pH∼3) and basic (measured at pH∼9) in seconds, while the operating character of the conventional column is unchanged. This switch modulates the velocity of ionizable analytes about 20-fold in the system, whereas non-ionizable analytes are not affected. In this way, the retention time of acids and/or bases can be reproducibly altered (&lt;1% RSD; n = 3) in SFC separations. As a result, analyte selectivity and resolution can be readily controlled during analyses. For example, a selectivity reversal (alpha from 0.4 to 1.6) and a resolution increase (from 0 to 13) are demonstrated. Rapid stationary phase pH switching also allows multiple acids, bases, and/or neutral analytes to be determined simultaneously. Applications demonstrate that this method can greatly simplify complex mixture analysis in SFC by helping to separate target analytes from interfering matrix components.</p>\n </div>","PeriodicalId":17098,"journal":{"name":"Journal of separation science","volume":"47 21","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dual Column pH Switchable Water Stationary Phase System for Separation Control in Supercritical Fluid Chromatography\",\"authors\":\"Emmanuel A. Nai,&nbsp;Kevin B. Thurbide\",\"doi\":\"10.1002/jssc.70008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A dual column system comprised of a pH switchable water stationary phase column and a conventional non-polar capillary column is introduced for use in Supercritical Fluid Chromatography (SFC). By removing or adding NH<sub>4</sub>OH to the system hydration source, the water stationary phase pH can be rapidly switched between acidic (measured at pH∼3) and basic (measured at pH∼9) in seconds, while the operating character of the conventional column is unchanged. This switch modulates the velocity of ionizable analytes about 20-fold in the system, whereas non-ionizable analytes are not affected. In this way, the retention time of acids and/or bases can be reproducibly altered (&lt;1% RSD; n = 3) in SFC separations. As a result, analyte selectivity and resolution can be readily controlled during analyses. For example, a selectivity reversal (alpha from 0.4 to 1.6) and a resolution increase (from 0 to 13) are demonstrated. Rapid stationary phase pH switching also allows multiple acids, bases, and/or neutral analytes to be determined simultaneously. Applications demonstrate that this method can greatly simplify complex mixture analysis in SFC by helping to separate target analytes from interfering matrix components.</p>\\n </div>\",\"PeriodicalId\":17098,\"journal\":{\"name\":\"Journal of separation science\",\"volume\":\"47 21\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of separation science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jssc.70008\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of separation science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jssc.70008","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种用于超临界流体色谱(SFC)的双柱系统,该系统由 pH 值可切换的水固定相柱和传统的非极性毛细管柱组成。通过在系统水合源中移除或添加 NH4OH,水固定相的 pH 值可在几秒钟内在酸性(pH∼3 时测量)和碱性(pH∼9 时测量)之间快速切换,而传统色谱柱的工作特性保持不变。这种切换可将系统中可电离分析物的速度调节约 20 倍,而不可电离分析物则不受影响。这样,酸和(或)碱的保留时间就可以发生可重现的改变 (
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Dual Column pH Switchable Water Stationary Phase System for Separation Control in Supercritical Fluid Chromatography

A dual column system comprised of a pH switchable water stationary phase column and a conventional non-polar capillary column is introduced for use in Supercritical Fluid Chromatography (SFC). By removing or adding NH4OH to the system hydration source, the water stationary phase pH can be rapidly switched between acidic (measured at pH∼3) and basic (measured at pH∼9) in seconds, while the operating character of the conventional column is unchanged. This switch modulates the velocity of ionizable analytes about 20-fold in the system, whereas non-ionizable analytes are not affected. In this way, the retention time of acids and/or bases can be reproducibly altered (<1% RSD; n = 3) in SFC separations. As a result, analyte selectivity and resolution can be readily controlled during analyses. For example, a selectivity reversal (alpha from 0.4 to 1.6) and a resolution increase (from 0 to 13) are demonstrated. Rapid stationary phase pH switching also allows multiple acids, bases, and/or neutral analytes to be determined simultaneously. Applications demonstrate that this method can greatly simplify complex mixture analysis in SFC by helping to separate target analytes from interfering matrix components.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of separation science
Journal of separation science 化学-分析化学
CiteScore
6.30
自引率
16.10%
发文量
408
审稿时长
1.8 months
期刊介绍: The Journal of Separation Science (JSS) is the most comprehensive source in separation science, since it covers all areas of chromatographic and electrophoretic separation methods in theory and practice, both in the analytical and in the preparative mode, solid phase extraction, sample preparation, and related techniques. Manuscripts on methodological or instrumental developments, including detection aspects, in particular mass spectrometry, as well as on innovative applications will also be published. Manuscripts on hyphenation, automation, and miniaturization are particularly welcome. Pre- and post-separation facets of a total analysis may be covered as well as the underlying logic of the development or application of a method.
期刊最新文献
Development of a Non-Covalent Molecularly Imprinted Polymer via Precipitation Method for the Selective Separation of D-Xylose From Sugarcane Residues Comparison of Two Analytical Techniques of Biomass Burning Markers in PM1 and PM2.5 From Zabrze, Southern Poland Critical Assessment of Clean-up Procedures Used for Gas Chromatography-Mass Spectrometry Analysis of Pesticide Residues in Cannabis Inflorescence LC–MS-Based Simultaneous Determination of Biomarkers in Dried Urine Spots for the Detection of Cofactor-Dependent Metabolic Disorders in Neonates Primaquine Analysis in Pharmaceutical Formulation Using Multiple and Short-End Injections by Capillary Zone Electrophoresis-Ultraviolet Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1