{"title":"利用高度集成的非接触式电导检测器通过微芯片电泳快速测定人血浆中的加兰他敏","authors":"Zhilei Li, Gangyuan Lin, Xiujuan Yang","doi":"10.1002/jssc.70013","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A novel and rapid method was developed for the determination of galantamine in human plasma by microchip electrophoresis with a highly integrated contactless conductivity detector (CCD). The instrumental parameters affecting the response of the detector, such as excitation frequency and excitation voltage, were examined and optimized. The electrophoresis conditions that influenced the separation and detection of galantamine, including the composition of buffer solution, buffer pH, buffer concentration, additives, injection time, and separation voltage were systematically investigated. Under the optimal conditions, the peak height had a good linear relationship with the concentration of galantamine in human plasma from 10 to 160 µg/L, and the correlation coefficient was 0.9992, the limit of detection reached 1.1 µg/L. The recoveries were between 98.6% and 102.1%. This sensitive, rapid, and convenient method is a good alternative to existing methods for galantamine determination. Also, this highly integrated CCD holds great promise in clinical biochemical analysis.</p>\n </div>","PeriodicalId":17098,"journal":{"name":"Journal of separation science","volume":"47 21","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid Determination of Galantamine in Human Plasma by Microchip Electrophoresis With a Highly Integrated Contactless Conductivity Detector\",\"authors\":\"Zhilei Li, Gangyuan Lin, Xiujuan Yang\",\"doi\":\"10.1002/jssc.70013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A novel and rapid method was developed for the determination of galantamine in human plasma by microchip electrophoresis with a highly integrated contactless conductivity detector (CCD). The instrumental parameters affecting the response of the detector, such as excitation frequency and excitation voltage, were examined and optimized. The electrophoresis conditions that influenced the separation and detection of galantamine, including the composition of buffer solution, buffer pH, buffer concentration, additives, injection time, and separation voltage were systematically investigated. Under the optimal conditions, the peak height had a good linear relationship with the concentration of galantamine in human plasma from 10 to 160 µg/L, and the correlation coefficient was 0.9992, the limit of detection reached 1.1 µg/L. The recoveries were between 98.6% and 102.1%. This sensitive, rapid, and convenient method is a good alternative to existing methods for galantamine determination. Also, this highly integrated CCD holds great promise in clinical biochemical analysis.</p>\\n </div>\",\"PeriodicalId\":17098,\"journal\":{\"name\":\"Journal of separation science\",\"volume\":\"47 21\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of separation science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jssc.70013\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of separation science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jssc.70013","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Rapid Determination of Galantamine in Human Plasma by Microchip Electrophoresis With a Highly Integrated Contactless Conductivity Detector
A novel and rapid method was developed for the determination of galantamine in human plasma by microchip electrophoresis with a highly integrated contactless conductivity detector (CCD). The instrumental parameters affecting the response of the detector, such as excitation frequency and excitation voltage, were examined and optimized. The electrophoresis conditions that influenced the separation and detection of galantamine, including the composition of buffer solution, buffer pH, buffer concentration, additives, injection time, and separation voltage were systematically investigated. Under the optimal conditions, the peak height had a good linear relationship with the concentration of galantamine in human plasma from 10 to 160 µg/L, and the correlation coefficient was 0.9992, the limit of detection reached 1.1 µg/L. The recoveries were between 98.6% and 102.1%. This sensitive, rapid, and convenient method is a good alternative to existing methods for galantamine determination. Also, this highly integrated CCD holds great promise in clinical biochemical analysis.
期刊介绍:
The Journal of Separation Science (JSS) is the most comprehensive source in separation science, since it covers all areas of chromatographic and electrophoretic separation methods in theory and practice, both in the analytical and in the preparative mode, solid phase extraction, sample preparation, and related techniques. Manuscripts on methodological or instrumental developments, including detection aspects, in particular mass spectrometry, as well as on innovative applications will also be published. Manuscripts on hyphenation, automation, and miniaturization are particularly welcome. Pre- and post-separation facets of a total analysis may be covered as well as the underlying logic of the development or application of a method.