{"title":"解密山羊耐热胁迫的分子机制:转录组和基因共表达分析的启示。","authors":"Mahesh Shivanand Dige , Ankita Gurao , Arnav Mehrotra , Manoj Kumar Singh , Amit Kumar , Rakesh Kaushik , Ranjit Singh Kataria , Pramod Kumar Rout","doi":"10.1016/j.jtherbio.2024.104007","DOIUrl":null,"url":null,"abstract":"<div><div>Climate change poses a significant threat to the sustainability of livestock production systems in developing countries, particularly impacting small ruminants like goats, which are highly susceptible to heat stress. This stressor not only reduces productivity but also undermines economic viability. This study aimed to delve into the molecular mechanisms underlying heat stress tolerance in goats by conducting a comprehensive transcriptome analysis of heat-tolerant (HT, n = 4) and heat-susceptible (HS, n = 6) Jamunapari goats. Physiological metrics, such as rectal temperature, respiratory rate, and heart rate, were meticulously monitored under extreme environmental conditions (Temperature Humidity Index >92) to effectively classify goats based on their distinct heat stress responses. Samples of blood were obtained, and peripheral blood mononuclear cells (PBMCs) were extracted for subsequent RNA extraction. RNA-Seq analysis revealed a sum of 734 differentially expressed genes (DEGs), comprising 251 upregulated and 483 downregulated genes in HT goats compared to their HS counterparts. The WGCNA revealed three key modules, darkorange (tolerance), paleturquoise (respiration rate), and darkmagenta (heart rate). Moreover, functional enrichment analysis revealed that DEGs within these modules played intricate roles in crucial biological processes and pathways, including mitochondrial function, cardiac function, immune response, genomic stability, and metabolic regulation. This research notably enhances our comprehension of the genetic underpinnings of thermo-tolerance in goats and provides invaluable guidance for formulating breeding strategies aimed at bolstering livestock resilience against the challenges of climate change.</div></div>","PeriodicalId":17428,"journal":{"name":"Journal of thermal biology","volume":"125 ","pages":"Article 104007"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the molecular mechanisms of heat stress tolerance in goats: Insights from transcriptome and Gene Co-expression analysis\",\"authors\":\"Mahesh Shivanand Dige , Ankita Gurao , Arnav Mehrotra , Manoj Kumar Singh , Amit Kumar , Rakesh Kaushik , Ranjit Singh Kataria , Pramod Kumar Rout\",\"doi\":\"10.1016/j.jtherbio.2024.104007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Climate change poses a significant threat to the sustainability of livestock production systems in developing countries, particularly impacting small ruminants like goats, which are highly susceptible to heat stress. This stressor not only reduces productivity but also undermines economic viability. This study aimed to delve into the molecular mechanisms underlying heat stress tolerance in goats by conducting a comprehensive transcriptome analysis of heat-tolerant (HT, n = 4) and heat-susceptible (HS, n = 6) Jamunapari goats. Physiological metrics, such as rectal temperature, respiratory rate, and heart rate, were meticulously monitored under extreme environmental conditions (Temperature Humidity Index >92) to effectively classify goats based on their distinct heat stress responses. Samples of blood were obtained, and peripheral blood mononuclear cells (PBMCs) were extracted for subsequent RNA extraction. RNA-Seq analysis revealed a sum of 734 differentially expressed genes (DEGs), comprising 251 upregulated and 483 downregulated genes in HT goats compared to their HS counterparts. The WGCNA revealed three key modules, darkorange (tolerance), paleturquoise (respiration rate), and darkmagenta (heart rate). Moreover, functional enrichment analysis revealed that DEGs within these modules played intricate roles in crucial biological processes and pathways, including mitochondrial function, cardiac function, immune response, genomic stability, and metabolic regulation. This research notably enhances our comprehension of the genetic underpinnings of thermo-tolerance in goats and provides invaluable guidance for formulating breeding strategies aimed at bolstering livestock resilience against the challenges of climate change.</div></div>\",\"PeriodicalId\":17428,\"journal\":{\"name\":\"Journal of thermal biology\",\"volume\":\"125 \",\"pages\":\"Article 104007\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of thermal biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306456524002250\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thermal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306456524002250","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Deciphering the molecular mechanisms of heat stress tolerance in goats: Insights from transcriptome and Gene Co-expression analysis
Climate change poses a significant threat to the sustainability of livestock production systems in developing countries, particularly impacting small ruminants like goats, which are highly susceptible to heat stress. This stressor not only reduces productivity but also undermines economic viability. This study aimed to delve into the molecular mechanisms underlying heat stress tolerance in goats by conducting a comprehensive transcriptome analysis of heat-tolerant (HT, n = 4) and heat-susceptible (HS, n = 6) Jamunapari goats. Physiological metrics, such as rectal temperature, respiratory rate, and heart rate, were meticulously monitored under extreme environmental conditions (Temperature Humidity Index >92) to effectively classify goats based on their distinct heat stress responses. Samples of blood were obtained, and peripheral blood mononuclear cells (PBMCs) were extracted for subsequent RNA extraction. RNA-Seq analysis revealed a sum of 734 differentially expressed genes (DEGs), comprising 251 upregulated and 483 downregulated genes in HT goats compared to their HS counterparts. The WGCNA revealed three key modules, darkorange (tolerance), paleturquoise (respiration rate), and darkmagenta (heart rate). Moreover, functional enrichment analysis revealed that DEGs within these modules played intricate roles in crucial biological processes and pathways, including mitochondrial function, cardiac function, immune response, genomic stability, and metabolic regulation. This research notably enhances our comprehension of the genetic underpinnings of thermo-tolerance in goats and provides invaluable guidance for formulating breeding strategies aimed at bolstering livestock resilience against the challenges of climate change.
期刊介绍:
The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are:
• The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature
• The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature
• Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause
• Effects of temperature on reproduction and development, growth, ageing and life-span
• Studies on modelling heat transfer between organisms and their environment
• The contributions of temperature to effects of climate change on animal species and man
• Studies of conservation biology and physiology related to temperature
• Behavioural and physiological regulation of body temperature including its pathophysiology and fever
• Medical applications of hypo- and hyperthermia
Article types:
• Original articles
• Review articles